Segmentation of brain images using adaptive atlases with application to ventriculomegaly
- PMID: 21761641
- PMCID: PMC3478153
- DOI: 10.1007/978-3-642-22092-0_1
Segmentation of brain images using adaptive atlases with application to ventriculomegaly
Abstract
Segmentation of brain images often requires a statistical atlas for providing prior information about the spatial position of different structures. A major limitation of atlas-based segmentation algorithms is their deficiency in analyzing brains that have a large deviation from the population used in the construction of the atlas. We present an expectation-maximization framework based on a Dirichlet distribution to adapt a statistical atlas to the underlying subject. Our model combines anatomical priors with the subject's own anatomy, resulting in a subject specific atlas which we call an "adaptive atlas". The generation of this adaptive atlas does not require the subject to have an anatomy similar to that of the atlas population, nor does it rely on the availability of an ensemble of similar images. The proposed method shows a significant improvement over current segmentation approaches when applied to subjects with severe ventriculomegaly, where the anatomy deviates significantly from the atlas population. Furthermore, high levels of accuracy are maintained when the method is applied to subjects with healthy anatomy.
Figures



Similar articles
-
Deformable atlas for multi-structure segmentation.Med Image Comput Comput Assist Interv. 2013;16(Pt 1):743-50. doi: 10.1007/978-3-642-40811-3_93. Med Image Comput Comput Assist Interv. 2013. PMID: 24505734
-
Robust brain registration using adaptive probabilistic atlas.Med Image Comput Comput Assist Interv. 2008;11(Pt 2):1041-9. doi: 10.1007/978-3-540-85990-1_125. Med Image Comput Comput Assist Interv. 2008. PMID: 18982707 Free PMC article.
-
A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences.Neuroimage. 2012 Jan 16;59(2):1275-89. doi: 10.1016/j.neuroimage.2011.07.095. Epub 2011 Aug 22. Neuroimage. 2012. PMID: 21884801 Free PMC article.
-
Multi-atlas segmentation of biomedical images: A survey.Med Image Anal. 2015 Aug;24(1):205-219. doi: 10.1016/j.media.2015.06.012. Epub 2015 Jul 6. Med Image Anal. 2015. PMID: 26201875 Free PMC article. Review.
-
Advanced neonatal NeuroMRI.Magn Reson Imaging Clin N Am. 2012 Feb;20(1):81-91. doi: 10.1016/j.mric.2011.08.009. Magn Reson Imaging Clin N Am. 2012. PMID: 22118594 Free PMC article. Review.
Cited by
-
Investigation of probability maps in deep-learning-based brain ventricle parcellation.Proc SPIE Int Soc Opt Eng. 2023 Feb;12464:124642G. doi: 10.1117/12.2653999. Epub 2023 Apr 3. Proc SPIE Int Soc Opt Eng. 2023. PMID: 38013746 Free PMC article.
-
Subject Specific Sparse Dictionary Learning for Atlas based Brain MRI Segmentation.Mach Learn Med Imaging. 2014;8679:248-255. doi: 10.1007/978-3-319-10581-9_31. Mach Learn Med Imaging. 2014. PMID: 25383394 Free PMC article.
-
Patch-based augmentation of Expectation-Maximization for brain MRI tissue segmentation at arbitrary age after premature birth.Neuroimage. 2016 Feb 15;127:387-408. doi: 10.1016/j.neuroimage.2015.12.009. Epub 2015 Dec 17. Neuroimage. 2016. PMID: 26702777 Free PMC article.
-
Accurate segmentation of brain images into 34 structures combining a non-stationary adaptive statistical atlas and a multi-atlas with applications to Alzheimer's disease.Proc IEEE Int Symp Biomed Imaging. 2013 Apr;2013:1202-1205. doi: 10.1109/ISBI.2013.6556696. Epub 2013 Jul 15. Proc IEEE Int Symp Biomed Imaging. 2013. PMID: 31788155 Free PMC article.
-
AUTOMATED VENTRICLE PARCELLATION AND EVAN'S RATIO COMPUTATION IN PRE- AND POST-SURGICAL VENTRICULOMEGALY.Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023:10.1109/isbi53787.2023.10230729. doi: 10.1109/isbi53787.2023.10230729. Epub 2023 Sep 1. Proc IEEE Int Symp Biomed Imaging. 2023. PMID: 38013948 Free PMC article.
References
-
- Ashburner J, Friston K. Multimodal image coregistration and partitioning–a unified framework. NeuroImage. 1997;6(3):209–17. - PubMed
-
- Bhatia KK, Aljabar P, Boardman JP, Srinivasan L, Murgasova M, Counsell SJ, Rutherford MA, Hajnal J, Edwards AD, Rueckert D. Groupwise combined segmentation and registration for atlas construction. In: Ayache N, Ourselin S, Maeder A, editors. Proc of MICCAI. pp. 532–40. - PubMed
- Lecture Notes in Computer Science. Springer; Berlin / Heidelberg: 2007.
-
- Clarke MJ, Meyer FB. The history of mathematical modeling in hydrocephalus. Neurosurg Focus. 2007;22(4):E3. - PubMed
-
- Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, Evans AC. Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging. 1998;17(3):463–468. - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous