Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Nov;93(11):2006-12.
doi: 10.1016/j.biochi.2011.06.028. Epub 2011 Jul 13.

Gain of RNA function in pathological cases: Focus on myotonic dystrophy

Affiliations
Review

Gain of RNA function in pathological cases: Focus on myotonic dystrophy

A F Klein et al. Biochimie. 2011 Nov.

Abstract

Expansion of repeated sequences in non-coding regions of different genes causes a number of inherited diseases including myotonic dystrophies, Huntington disease-like 2, Fragile X tremor/ataxia syndrome and spinocerebellar ataxia 8, 10, 12, 31. Involvement of an RNA gain-of-function mechanism in pathological case has been described and studied in-depth in myotonic dystrophy type 1 (DM1). This inherited neuromuscular disorder is caused by a (CTG)n >50 expansion in the 3' non-coding region of the dystrophia myotonica-protein kinase (DMPK) gene. Expanded CUG transcripts (CUGexp-RNAs) are sequestered in the nucleus within small aggregates and interfere with the regulatory splicing activities of MBNL1 and CELF1 RNA-binding proteins, leading to the misregulation of the alternative splicing of several transcripts. Despite the relevance of aberrant splicing events in this complex pathology, the CUGexp-RNAs trans-dominant effects alter other splicing-independent processes that may also contribute to DM1 pathogenesis. This review will focus on toxic RNA gain-of-function as a pathologic mechanism for DM1 and other repeat expansion disorders.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources