Inference from populations: going beyond models
- PMID: 21763521
- DOI: 10.1016/B978-0-444-53355-5.00007-5
Inference from populations: going beyond models
Abstract
How are abstract signals, like intent, represented in neural populations? By creating a direct link between neural activity and behavior, brain-computer interfaces (BCIs) can help answer this question. Early instantiations of these devices sought mainly to mimic arm movements: by building models of arm tuning for the neurons, desired arm movements could be read out and used to control various prosthetic devices. However, as the functionality of these devices increases, a more general approach that relies less on endogenous control signals may be required. Here we review some of the current, model-based approaches for finding volitional control signals for spiking-based BCIs, and present some new approaches for finding control signals without resorting to parametric models of neural activity.
Copyright © 2011 Elsevier B.V. All rights reserved.
Similar articles
-
A review on directional information in neural signals for brain-machine interfaces.J Physiol Paris. 2009 Sep-Dec;103(3-5):244-54. doi: 10.1016/j.jphysparis.2009.08.007. Epub 2009 Aug 7. J Physiol Paris. 2009. PMID: 19665554 Review.
-
Improved multi-unit decoding at the brain-machine interface using population temporal linear filtering.J Neural Eng. 2010 Aug;7(4):046012. doi: 10.1088/1741-2560/7/4/046012. Epub 2010 Jul 19. J Neural Eng. 2010. PMID: 20644245
-
Towards on-line adaptation of neuro-prostheses with neuronal evaluation signals.Biol Cybern. 2006 Sep;95(3):243-57. doi: 10.1007/s00422-006-0083-7. Epub 2006 Jun 27. Biol Cybern. 2006. PMID: 16802156
-
Brain-computer interface research comes of age: traditional assumptions meet emerging realities.J Mot Behav. 2010 Nov;42(6):351-3. doi: 10.1080/00222895.2010.526471. J Mot Behav. 2010. PMID: 21184352
-
Learning to move machines with the mind.Trends Neurosci. 2011 Feb;34(2):61-75. doi: 10.1016/j.tins.2010.11.003. Epub 2010 Dec 20. Trends Neurosci. 2011. PMID: 21176975 Review.
Cited by
-
The Largest Response Component in the Motor Cortex Reflects Movement Timing but Not Movement Type.eNeuro. 2016 Aug 30;3(4):ENEURO.0085-16.2016. doi: 10.1523/ENEURO.0085-16.2016. eCollection 2016 Jul-Aug. eNeuro. 2016. PMID: 27761519 Free PMC article.
-
Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1.PLoS Comput Biol. 2016 Nov 4;12(11):e1005164. doi: 10.1371/journal.pcbi.1005164. eCollection 2016 Nov. PLoS Comput Biol. 2016. PMID: 27814353 Free PMC article.
-
Reprogramming movements: extraction of motor intentions from cortical ensemble activity when movement goals change.Front Neuroeng. 2012 Jul 18;5:16. doi: 10.3389/fneng.2012.00016. eCollection 2012. Front Neuroeng. 2012. PMID: 22826698 Free PMC article.
-
Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces.J Neurosci. 2022 Jan 12;42(2):220-239. doi: 10.1523/JNEUROSCI.2687-20.2021. Epub 2021 Oct 29. J Neurosci. 2022. PMID: 34716229 Free PMC article.
-
Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays.Front Integr Neurosci. 2015 Jun 10;9:40. doi: 10.3389/fnint.2015.00040. eCollection 2015. Front Integr Neurosci. 2015. PMID: 26113812 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources