Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct;31(4):595-9.
doi: 10.1016/j.fsi.2011.06.025. Epub 2011 Jul 13.

A multivalent killed whole-cell vaccine induces effective protection against Edwardsiella tarda and Vibrio anguillarum

Affiliations

A multivalent killed whole-cell vaccine induces effective protection against Edwardsiella tarda and Vibrio anguillarum

Yun Sun et al. Fish Shellfish Immunol. 2011 Oct.

Abstract

Edwardsiella tarda, Vibrio anguillarum, Streptococcus iniae, and Vibrio harveyi are important aquaculture pathogens that affect a wide range of fish species. In this study, we examined in a Japanese founder (Paralichthys olivaceus) model the possibility of developing simple, killed whole-cell vaccines with protective effect against two or more of the above pathogens. For this purpose, we utilized four pathogenic fish isolates: E. tarda TX1, V. anguillarum C312, S. iniae SF1, and V. harveyi T4D. Flounder were immunized with inactivated monovalent TX1, C312, SF1, or T4D, or with different combinations of these strains in the form of (i): TX1, C312, SF1, and T4D mix (M4); (ii) TX1, C312, and SF1 mix (M3); (iii) TX1 and C312 mix (M2). Fish were challenged at two months post-vaccination with E. tarda, V. anguillarum, S. iniae, or V. harveyi and monitored for mortality. The results showed that the monovalent vaccines produced low protections, with relative percent survival (RPS) rates between 33.3% and 53.9%. Compared to monovalent vaccines, M2, M3, and M4 all induced significantly higher levels of protection against E. tarda. In addition, M2 and M4 also effected much higher (∼19%) RPS rates against V. anguillarum. Serum antibody production and bactericidal activity analysis showed a correlation between protection efficacy and antibody level. These results suggest a humoral immunity-based mechanism of protection induced by inactivated whole-cell vaccines, and that there exists a mutual and specific immunostimulatory effect between E. tarda TX1 and V. anguillarum C312, which enables the divalent M2 to induce effective protective immunity against E. tarda and V. anguillarum.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms