Immortalization of MEF is characterized by the deregulation of specific miRNAs with potential tumor suppressor activity
- PMID: 21765199
- PMCID: PMC3181166
- DOI: 10.18632/aging.100353
Immortalization of MEF is characterized by the deregulation of specific miRNAs with potential tumor suppressor activity
Abstract
The life span (Hayflick limit) of primary mouse embryo fibroblasts (MEF) in culture is variable but it is still unclear if the escape of the Hayflick limit is also variable. To address this point MEF were expanded every fifteen days (6T15) instead of every three days (6T3) until they became immortal. With this protocol MEF lifespan was extended and immortalization accordingly delayed. By testing a panel of genes (p19ARF, p16, p21) and miRNAs (miR-20a, miR-21, miR-28, miR-290) related to primary MEF senescence, a switch of p21 from up to down regulation, the down regulation of specific miRNAs as well as a massive shift from diploidy to hyperdiploidy were observed in coincidence with the resumption of cell proliferation. Collectively, these data indicate that the inactivation of genes and miRNAs, important in controlling cell proliferation, might be determinant for the escape from the Hayflick limit. In support of this hypothesis was the finding that some of the down regulated miRNAs transfected in immortalized MEF inhibited cell proliferation thus displaying a tumor suppressor-like activity.
Figures
References
-
- Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120:513–22. - PubMed
-
- vom Brocke J, Schmeiser HH, Reinbold M, Hollstein M. MEF immortalization to investigate the ins and outs of mutagenesis. Carcinogenesis. 2006;27:2141–7. - PubMed
-
- Pitto L, Rizzo M, Simili M, Colligiani D, Evangelista M, Mercatanti A, Mariani L, Cremisi F, Rainaldi G. miR-290 acts as a physiological effector of senescence in mouse embryo fibroblasts. Physiol Genomics. 2009;39:210–8. - PubMed
-
- Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88:593–602. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
