Direct quantification of the attempt frequency determining the mechanical unfolding of ubiquitin protein
- PMID: 21768096
- PMCID: PMC3173078
- DOI: 10.1074/jbc.M111.264093
Direct quantification of the attempt frequency determining the mechanical unfolding of ubiquitin protein
Abstract
Understanding protein dynamics requires a comprehensive knowledge of the underlying potential energy surface that governs the motion of each individual protein molecule. Single molecule mechanical studies have provided the unprecedented opportunity to study the individual unfolding pathways along a well defined coordinate, the end-to-end length of the protein. In these experiments, unfolding requires surmounting an energy barrier that separates the native from the extended state. The calculation of the absolute value of the barrier height has traditionally relied on the assumption of an attempt frequency, υ(‡). Here we used single molecule force-clamp spectroscopy to directly determine the value of υ(‡) for mechanical unfolding by measuring the unfolding rate of the small protein ubiquitin at varying temperatures. Our experiments demonstrate a significant effect of the temperature on the mechanical rate of unfolding. By extrapolating the unfolding rate in the absence of force for different temperatures, varying within the range spanning from 5 to 45 °C, we measured a value for the activation barrier of ΔG(‡) = 71 ± 5 kJ/mol and an exponential prefactor υ(‡) ∼4 × 10(9) s(-1). Although the measured prefactor value is 3 orders of magnitude smaller than the value predicted by the transition state theory (∼6 × 10(12) s(-1)), it is 400-fold higher than that encountered in analogous experiments studying the effect of temperature on the reactivity of a protein-embedded disulfide bond (∼10(7) M(-1) s(-1)). This approach will allow quantitative characterization of the complete energy landscape of a folding polypeptide from highly extended states, of capital importance for proteins with elastic function.
Figures





Similar articles
-
FEATHER: Automated Analysis of Force Spectroscopy Unbinding and Unfolding Data via a Bayesian Algorithm.Biophys J. 2018 Sep 4;115(5):757-762. doi: 10.1016/j.bpj.2018.07.031. Epub 2018 Aug 7. Biophys J. 2018. PMID: 30122292 Free PMC article.
-
Ligand-induced changes of the apparent transition-state position in mechanical protein unfolding.Biophys J. 2015 Jul 21;109(2):365-72. doi: 10.1016/j.bpj.2015.06.009. Biophys J. 2015. PMID: 26200872 Free PMC article.
-
Unfolding Dynamics of Ubiquitin from Constant Force MD Simulation: Entropy-Enthalpy Interplay Shapes the Free-Energy Landscape.J Phys Chem B. 2019 Feb 14;123(6):1228-1236. doi: 10.1021/acs.jpcb.8b09318. Epub 2019 Feb 5. J Phys Chem B. 2019. PMID: 30665306
-
Engineered bi-histidine metal chelation sites map the structure of the mechanical unfolding transition state of an elastomeric protein domain GB1.Biophys J. 2012 Aug 22;103(4):807-16. doi: 10.1016/j.bpj.2012.07.019. Biophys J. 2012. PMID: 22947942 Free PMC article.
-
Temperature-dependent downhill unfolding of ubiquitin. I. Nanosecond-to-millisecond resolved nonlinear infrared spectroscopy.Proteins. 2008 Jul;72(1):474-87. doi: 10.1002/prot.22043. Proteins. 2008. PMID: 18384151
Cited by
-
Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers.Methods Mol Biol. 2017;1486:357-390. doi: 10.1007/978-1-4939-6421-5_14. Methods Mol Biol. 2017. PMID: 27844436 Free PMC article.
-
Measuring biological materials mechanics with atomic force microscopy - Mechanical unfolding of biopolymers.Microsc Res Tech. 2022 Aug;85(8):3025-3036. doi: 10.1002/jemt.24136. Epub 2022 May 2. Microsc Res Tech. 2022. PMID: 35502131 Free PMC article.
-
Structure-Based Derivation of Protein Folding Intermediates and Energies from Optical Tweezers.Biophys J. 2016 Jan 19;110(2):441-454. doi: 10.1016/j.bpj.2015.12.003. Biophys J. 2016. PMID: 26789767 Free PMC article.
-
A HaloTag Anchored Ruler for Week-Long Studies of Protein Dynamics.J Am Chem Soc. 2016 Aug 24;138(33):10546-53. doi: 10.1021/jacs.6b05429. Epub 2016 Aug 9. J Am Chem Soc. 2016. PMID: 27409974 Free PMC article.
-
Ab Initio Study of the Interaction of a Graphene Surface Decorated with a Metal-Doped C30 with Carbon Monoxide, Carbon Dioxide, Methane, and Ozone.Int J Mol Sci. 2022 Apr 29;23(9):4933. doi: 10.3390/ijms23094933. Int J Mol Sci. 2022. PMID: 35563323 Free PMC article.
References
-
- Jackson S. E. (1998) Fold. Des. 3, R81–R91 - PubMed
-
- Fersht A. (1999) Structure and Mechanism in Protein Science, W. H. Freeman, New York
-
- Eyring H. (1935) J. Chem. Phys. 3, 107–115
-
- Garcia-Viloca M., Gao J., Karplus M., Truhlar D. G. (2004) Science 303, 186–195 - PubMed
-
- Collet O., Chipot C. (2003) J. Am. Chem. Soc. 125, 6573–6580 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources