Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Sep 18;29(37):8702-6.
doi: 10.1021/bi00489a028.

Hemes a and a3 environments of plant cytochrome c oxidase

Affiliations
Comparative Study

Hemes a and a3 environments of plant cytochrome c oxidase

J C de Paula et al. Biochemistry. .

Abstract

The structures of hemes a and a3 of maize and wheat germ cytochrome c oxidase were investigated by resonance Raman spectroscopy. Comparison between the plant and mammalian cytochrome oxidases revealed that (i) the vinyl groups associated with hemes a and a3 vibrate at higher frequencies in the plant enzyme than in the mammalian enzyme, suggesting different degrees of interaction between the heme cores and their periphery; (ii) aside from the geometry of the vinyl group, the structure of heme a3 in plant cytochrome oxidase is essentially unchanged from that of its mammalian counterpart; (iii) the vibrational band associated with the formyl group of reduced heme a shows relatively weak enhancement in the Soret-excited resonance Raman spectra of maize and wheat germ cytochrome oxidase, suggesting that the formyl group of ferrous heme a in the plant enzymes is conjugated only slightly to the porphyrin ring; and (iv) for oxidized heme a, the formyl vibration is strongly enhanced, but its frequency indicates a weaker interaction with the protein milieu relative to the mammalian enzyme. These observations suggest that the local environment around the formyl position of the heme a chromophore differs in the plant and mammalian cytochrome oxidases. The implication of the latter feature in the mechanism of proton pumping by cytochrome oxidase is discussed.

PubMed Disclaimer

Publication types