Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep;79(9):2684-92.
doi: 10.1002/prot.23096. Epub 2011 Jul 18.

Structural analysis of the N-terminal fragment of the antiangiogenic protein endostatin: a molecular dynamics study

Affiliations

Structural analysis of the N-terminal fragment of the antiangiogenic protein endostatin: a molecular dynamics study

Pedro Henrique Monteiro Torres et al. Proteins. 2011 Sep.

Abstract

Endostatin is a potent antiangiogenic protein derived from the noncollagenous domain 1 (NC1) of collagen XVIII. The mechanism by which endostatin exerts its antiangiogenic effect is still incompletely understood. It has been shown that the 27 amino acid N-terminal fragment of murine endostatin has antitumor, antimigration, and antipermeability activities comparable to the full soluble protein. To understand how this peptide can exert such elaborate function, we performed structural analysis using molecular dynamics to evaluate the behavior of this fragment in aqueous environment. Here, we show that the N-terminal peptide of murine endostatin is able to assume a well-defined structure, folding into a zinc-dependent β-hairpin conformation. Analyzing the folding mechanism, we were able to understand why the N-terminal peptide of human endostatin with the same length failed to acquire a stable conformation. Conversely, we were able to predict the successful folding of the R4Q mutant and of a shorter form of the human peptide with 25 residues. Finally, we show that the β-hairpin conformation assumed by the zinc-bound peptide of murine endostatin has a high structural similarity with fragments of another family of angiogenesis inhibitors: the integrin-binding portion of the NC1 domain of collagen IV. Indeed, our docking simulations show that arresten, canstatin, and the endostatin peptide bind to the same spot of αVβ3 integrin, suggesting similar interactions via a common binding site on this receptor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources