Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul 19:6:82.
doi: 10.1186/1748-717X-6-82.

Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media

Affiliations

Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media

Antonella Fogliata et al. Radiat Oncol. .

Abstract

Background: A study was realised to evaluate and determine relative figures of merit of a new algorithm for photon dose calculation when applied to inhomogeneous media.

Methods: The new Acuros XB algorithm implemented in the Varian Eclipse treatment planning system was compared against a Monte Carlo method (VMC++), and the Analytical Anisotropic Algorithm (AAA). The study was carried out in virtual phantoms characterized by simple geometrical structures. An insert of different material and density was included in a phantom built of skeletal-muscle and HU = 0 (setting "A"): Normal Lung (lung, 0.198 g/cm3); Light Lung (lung, 0.035 g/cm3); Bone (bone, 1.798 g/cm3); another phantom (setting "B") was built of adipose material and including thin layers of bone (1.85 g/cm3), adipose (0.92 g/cm3), cartilage (1.4745 g/cm3), air (0.0012 g/cm3). Investigations were performed for 6 and 15 MV photon beams, and for a large (13 × 13 cm2) and a small (2.8 × 13 cm2) field.

Results: Results are provided in terms of depth dose curves, transverse profiles and Gamma analysis (3 mm/3% and 2 mm/2% distance to agreement/dose difference criteria) in planes parallel to the beam central axis; Monte Carlo simulations were assumed as reference. Acuros XB gave an average gamma agreement, with a 3 mm/3% criteria, of 100%, 86% and 100% for Normal Lung, Light Lung and Bone settings, respectively, and dose to medium calculations. The same figures were 86%, 11% and 100% for AAA, where only dose rescaled to water calculations are possible.

Conclusions: In conclusion, Acuros XB algorithm provides a valid and accurate alternative to Monte Carlo calculations for heterogeneity management.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Geometrical layout of the phantoms. Phantom A on the left; phantom B in the middle; sectors used in the 2D gamma analysis for phantom A on the right.
Figure 2
Figure 2
Depth dose curves (DD) as dose to medium, dose to water, dose rescaled to water. Calculations with Acuros XB version 10 algorithm: (A) Phantom A: in columns: Normal Lung, Light Lung, Bone; in rows: SF and LF for 6X, SF and LF for 15X. (B) Phantom B: in columns: SF, LF; in rows: 6X, 15X.
Figure 3
Figure 3
EGSnrc and VMC++ comparison. Depth dose curves (DD) at -4 cm off-axis for the SF, 6X case in Normal Lung, Light Lung and Bone for EGSnrc and VMC++.
Figure 4
Figure 4
Depth dose curves (DD) at -4 cm off-axis. Dose to medium calculations for VMC++, Acuros XB version 10, and AAA in phantom A. In columns: Normal Lung, Light Lung, Bone; in rows: SF and LF for 6X, SF and LF for 15X.
Figure 5
Figure 5
Profiles at mid-depth of the heterogeneity insert. Dose to medium calculations for VMC++, Acuros XB version 10, and AAA in phantom A. In columns: Normal Lung, Light Lung, Bone; in rows: SF and LF for 6X, SF and LF for 15X.
Figure 6
Figure 6
Depth dose curves (DD) at beam central axis. Dose to medium calculations for VMC++, Acuros XB version 10, and AAA in phantom B. In columns: SF, LF; in rows: 6X, 15X.
Figure 7
Figure 7
Depth dose curves (DD) at -4 cm off-axis. Dose to medium calculations for VMC++, Acuros XB versions 10 and 11 in phantom A. In columns: Normal Lung, Light Lung, Bone; in rows: SF and LF for 6X, SF and LF for 15X.
Figure 8
Figure 8
Profiles at mid-depth of the heterogeneity insert. Dose to medium calculations for VMC++, Acuros XB versions 10 and 11 in phantom A. In columns: Normal Lung, Light Lung, Bone; in rows: SF and LF for 6X, SF and LF for 15X.
Figure 9
Figure 9
Depth dose curves (DD) at beam central axis. Dose to medium calculations for VMC++, Acuros XB versions 10 and 11 in phantom B. In columns: SF, LF; in rows: 6X, 15X.
Figure 10
Figure 10
Gamma maps. Examples for LF, 15X, dose to medium, Acuros XB version 10 vs. VMC++. Thresholds 2 mm, 2% as global gamma computations. White lines represent the heterogeneity interfaces.
Figure 11
Figure 11
Histograms of the GAI. Global gamma calculation for each sector of phantoms A and B, for dose to medium calculations for Acuros XB version 10 (red horizontal hatching) and AAA (green diagonal hatching). Each bin represents the two threshold results of 2%, 2 mm (thin cross-hatching) and 3%, 3 mm (thick cross-hatching). In columns: Normal Lung, Light Lung, Bone, phantom B; in rows: SF and LF for 6X, SF and LF for 15X.

Similar articles

Cited by

References

    1. Knöös T, Wieslander E, Cozzi L, Brink C, Fogliata A, Albers D, Nyström H, Lassen S. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol. 2006;51:5785–5807. doi: 10.1088/0031-9155/51/22/005. - DOI - PubMed
    1. Fogliata A, Vanetti E, Albers D, Brink C, Clivio A, Knöös T, Nicolini G, Cozzi L. On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol. 2007;52:1363–1385. doi: 10.1088/0031-9155/52/5/011. - DOI - PubMed
    1. Fogliata A, Nicolini G, Vanetti E, Clivio A, Winkler P, Cozzi L. The impact of photon dose calculation algorithms on expected dose distributions in lungs under different respiratory phases. Phys Med Biol. 2008;53:2375–2390. doi: 10.1088/0031-9155/53/9/011. - DOI - PubMed
    1. van Esch A, Tillikainen L, Pyykkonen J, Tenhunen M, Helminen H, Siljamäki S, Alakuijala J, Paiusco M, Iori M, Huyskens DP. Testing of the analytical anisotropic algorithms for photon dose calculation. Med Phys. 2006;33:4130–4148. doi: 10.1118/1.2358333. - DOI - PubMed
    1. da Rosa LA, Cardos SC, Campos LT, Alves VG, Batista DV, Facure A. Percentage depth dose evaluation in heterogeneous media using thermoluminescent dosimetry. J Appl Clin Med Phys. 2010;11:117–127. - PMC - PubMed

Publication types

LinkOut - more resources