Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography
- PMID: 21773985
- DOI: 10.1002/mrm.22832
Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography
Abstract
The electric properties of human tissue can potentially be used as an additional diagnostic parameter, e.g., in tumor diagnosis. In the framework of radiofrequency safety, the electric conductivity of tissue is needed to correctly estimate the local specific absorption rate distribution during MR measurements. In this study, a recently developed approach, called electric properties tomography (EPT) is adapted for and applied to in vivo imaging. It derives the patient's electric conductivity and permittivity from the spatial sensitivity distributions of the applied radiofrequency coils. In contrast to other methods to measure the patient's electric properties, EPT does not apply externally mounted electrodes, currents, or radiofrequency probes, which enhances the practicability of the approach. This work shows that conductivity distributions can be reconstructed from phase images and permittivity distributions can be reconstructed from magnitude images of the radiofrequency transmit field. Corresponding numerical simulations using finite-difference time-domain methods support the feasibility of this phase-based conductivity imaging and magnitude-based permittivity imaging. Using this approximation, three-dimensional in vivo conductivity and permittivity maps of the human brain are obtained in 5 and 13 min, respectively, which can be considered a step toward clinical feasibility for EPT.
Copyright © 2011 Wiley-Liss, Inc.
Similar articles
-
Determination of electric conductivity and local SAR via B1 mapping.IEEE Trans Med Imaging. 2009 Sep;28(9):1365-74. doi: 10.1109/TMI.2009.2015757. Epub 2009 Apr 14. IEEE Trans Med Imaging. 2009. PMID: 19369153
-
Magnetic resonance driven electrical impedance tomography: a simulation study.IEEE Trans Med Imaging. 2011 Mar;30(3):828-37. doi: 10.1109/TMI.2010.2098035. Epub 2010 Dec 10. IEEE Trans Med Imaging. 2011. PMID: 21147595
-
Solution of the inverse problem of magnetic induction tomography (MIT).Physiol Meas. 2005 Apr;26(2):S241-50. doi: 10.1088/0967-3334/26/2/023. Epub 2005 Mar 29. Physiol Meas. 2005. PMID: 15798237
-
Electric properties tomography: Biochemical, physical and technical background, evaluation and clinical applications.NMR Biomed. 2017 Aug;30(8). doi: 10.1002/nbm.3729. Epub 2017 May 24. NMR Biomed. 2017. PMID: 28543640 Review.
-
Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging.Physiol Meas. 2008 Oct;29(10):R1-26. doi: 10.1088/0967-3334/29/10/R01. Epub 2008 Sep 17. Physiol Meas. 2008. PMID: 18799834 Review.
Cited by
-
Phantom Construction and Equipment Configurations for Characterizing Electrical Properties Using MRI.Adv Exp Med Biol. 2022;1380:83-110. doi: 10.1007/978-3-031-03873-0_4. Adv Exp Med Biol. 2022. PMID: 36306095
-
Phase-sensitive B1 mapping: Effects of relaxation and RF spoiling.Magn Reson Med. 2018 Jul;80(1):101-111. doi: 10.1002/mrm.27009. Epub 2017 Nov 20. Magn Reson Med. 2018. PMID: 29159883 Free PMC article.
-
Comparison of modelled diffusion-derived electrical conductivities found using magnetic resonance imaging.Front Radiol. 2025 Jan 22;5:1492479. doi: 10.3389/fradi.2025.1492479. eCollection 2025. Front Radiol. 2025. PMID: 39917284 Free PMC article.
-
Gradient-based magnetic resonance electrical properties imaging of brain tissues.Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6056-9. doi: 10.1109/EMBC.2014.6945010. Annu Int Conf IEEE Eng Med Biol Soc. 2014. PMID: 25571378 Free PMC article.
-
Functional conductivity imaging: quantitative mapping of brain activity.Phys Eng Sci Med. 2024 Dec;47(4):1723-1738. doi: 10.1007/s13246-024-01484-z. Epub 2024 Sep 11. Phys Eng Sci Med. 2024. PMID: 39259483 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical