Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul 19;4(182):ra46.
doi: 10.1126/scisignal.2001465.

The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy

Affiliations

The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy

Nagalingam R Sundaresan et al. Sci Signal. .

Abstract

Signaling through the kinase Akt regulates many biological functions. Akt is activated during growth factor stimulation through a process that requires binding of Akt to phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), which promotes membrane localization and phosphorylation of Akt by the upstream kinase PDK1 (phosphoinositide-dependent protein kinase 1). We show that Akt and PDK1 are acetylated at lysine residues in their pleckstrin homology domains, which mediate PIP(3) binding. Acetylation blocked binding of Akt and PDK1 to PIP(3), thereby preventing membrane localization and phosphorylation of Akt. Deacetylation by SIRT1 enhanced binding of Akt and PDK1 to PIP(3) and promoted their activation. Mice injected with cells expressing a mutant that mimicked a constitutively acetylated form of Akt developed smaller tumors than those injected with cells expressing wild-type Akt. Furthermore, impaired Akt activation in the hearts of SIRT1-deficient mice was associated with reduced cardiac hypertrophy in response to physical exercise and angiotensin II. These findings uncover a key posttranslational modification of Akt that is important for its oncogenic and hypertrophic activities.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources