Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov;301(5):C984-94.
doi: 10.1152/ajpcell.00146.2011. Epub 2011 Jul 20.

The short-chain fatty acid butyrate is a substrate of breast cancer resistance protein

Affiliations
Free article

The short-chain fatty acid butyrate is a substrate of breast cancer resistance protein

Pedro Gonçalves et al. Am J Physiol Cell Physiol. 2011 Nov.
Free article

Abstract

Colorectal cancer is one of the most common cancers worldwide. Butyrate (BT) plays a key role in colonic epithelium homeostasis. The aim of this work was to investigate the possibility of BT being transported by P-glycoprotein (MDR1), multidrug resistance proteins (MRPs), or breast cancer resistance protein (BCRP). Uptake and efflux of (14)C-BT and (3)H-folic acid were measured in Caco-2, IEC-6, and MDA-MB-231 cell lines. mRNA expression of BCRP was detected by RT-PCR. Cell viability, proliferation, and differentiation were quantified with the lactate dehydrogenase, sulforhodamine B, and alkaline phosphatase activity assays, respectively. In both IEC-6 cells and Caco-2 cells, no evidence was found for the involvement of either MDR1 or MRPs in (14)C-BT efflux from the cells. In contrast, several lines of evidence support the conclusion that BT is a substrate of both rat and human BCRP. Indeed, BCRP inhibitors reduced (14)C-BT efflux in IEC-6 cells, both BT and BCRP inhibitors significantly decreased the efflux of the known BCRP substrate (3)H-folic acid in IEC-6 cells, and BCRP inhibitors reduced (14)C-BT efflux in the BCRP-expressing MDA-MB-231 cell line. In IEC-6 cells, combination of BT with a BCRP inhibitor significantly potentiated the effect of BT on cell proliferation. The results of this study, showing for the first time that BT is a BCRP substrate, are very important in the context of the high levels of BCRP expression in the human colon and the anticarcinogenic and anti-inflammatory role of BT at that level. So, interaction of BT with BCRP and with other BCRP substrates/inhibitors is clearly of major importance.

PubMed Disclaimer

Comment in

Publication types

Substances

LinkOut - more resources