Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct;106(4):1985-99.
doi: 10.1152/jn.00131.2011. Epub 2011 Jul 20.

Frequency-dependent interaural delays in the medial superior olive: implications for interaural cochlear delays

Affiliations
Free article

Frequency-dependent interaural delays in the medial superior olive: implications for interaural cochlear delays

Mitchell L Day et al. J Neurophysiol. 2011 Oct.
Free article

Abstract

Neurons in the medial superior olive (MSO) are tuned to the interaural time difference (ITD) of sound arriving at the two ears. MSO neurons evoke a strongest response at their best delay (BD), at which the internal delay between bilateral inputs to MSO matches the external ITD. We performed extracellular recordings in the superior olivary complex of the anesthetized gerbil and found a majority of single units localized to the MSO to exhibit BDs that shifted with tone frequency. The relation of best interaural phase difference to tone frequency revealed nonlinearities in some MSO units and others with linear relations with characteristic phase between 0.4 and 0.6 cycles. The latter is usually associated with the interaction of ipsilateral excitation and contralateral inhibition, as in the lateral superior olive, yet all MSO units exhibited evidence of bilateral excitation. Interaural cochlear delays and phase-locked contralateral inhibition are two mechanisms of internal delay that have been suggested to create frequency-dependent delays. Best interaural phase-frequency relations were compared with a cross-correlation model of MSO that incorporated interaural cochlear delays and an additional frequency-independent delay component. The model with interaural cochlear delay fit phase-frequency relations exhibiting frequency-dependent delays with precision. Another model of MSO incorporating inhibition based on realistic biophysical parameters could not reproduce observed frequency-dependent delays.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources