A common mechanism for protein cluster formation
- PMID: 21776415
- PMCID: PMC3136944
- DOI: 10.4161/sgtp.2.3.15902
A common mechanism for protein cluster formation
Abstract
Polarized states on the membranes are characterized by focal accumulation of proteins and lipids at local concentrations far exceeding their levels typically found outside of these dense clusters. Principles of thermodynamics argue that formation and maintenance of such structures require continuous expenditure of cellular energy to combat the effect of molecular diffusion that relentlessly dissipates the clusters in favor of the spatially homogeneous state. Small GTPases are known to play a crucial role in the formation of several such polarized states. Their ability to consume stored energy and convert it into a potentially useful work by cyclically hydrolyzing GTP and coupling to various effectors in a nucleotide-dependent way, makes them eligible candidates to fulfill the requirements for the molecules involved in the mechanisms responsible for the maintenance of polarized states. Consistently, continuous nucleotide cycling of small GTPases has been found required for the emergence of structures in several well characterized cases. Despite this general awareness, the detailed molecular mechanisms remain largely unknown. In a recent study, not directly involving small GTPases, we proposed a mechanism explaining the emergence and maintenance of the stable cell-polarity landmark that manifests itself as a protein cluster positioned on the plasma membrane at the growing ends of fission yeast cells. Unexpectedly, this study has suggested a number of striking parallels with the mechanisms based on the activity of small GTPases. These findings highlight common design principles of cellular pattern-forming mechanisms that have been mixed and matched in various combinations in the course of evolution to achieve the same desired outcome-tightly controlled in space and time formation of dense protein clusters.
Figures

Similar articles
-
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2. Phys Biol. 2013. PMID: 23912807
-
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.Cochrane Database Syst Rev. 2022 Feb 1;2(2022):CD014217. doi: 10.1002/14651858.CD014217. Cochrane Database Syst Rev. 2022. PMID: 36321557 Free PMC article.
-
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19. Astrobiology. 2022. PMID: 34904892
-
Ras-related GTPases and the cytoskeleton.Mol Biol Cell. 1992 May;3(5):475-9. doi: 10.1091/mbc.3.5.475. Mol Biol Cell. 1992. PMID: 1611153 Free PMC article. Review.
-
Analyzing the function of small GTPases by microinjection of plasmids into polarized epithelial cells.J Vis Exp. 2011 May 31;(51):2645. doi: 10.3791/2645. J Vis Exp. 2011. PMID: 21673637 Free PMC article.
Cited by
-
Pattern formation of Rho GTPases in single cell wound healing.Mol Biol Cell. 2013 Feb;24(3):421-32. doi: 10.1091/mbc.E12-08-0634. Epub 2012 Dec 21. Mol Biol Cell. 2013. PMID: 23264464 Free PMC article.
References
Grants and funding
LinkOut - more resources
Full Text Sources