Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Apr;173(2):224-31.
doi: 10.1016/j.jss.2011.05.037. Epub 2011 Jun 23.

Role of MT1-MMP in estrogen-mediated cellular processes of intimal hyperplasia

Affiliations

Role of MT1-MMP in estrogen-mediated cellular processes of intimal hyperplasia

Deidra J H Mountain et al. J Surg Res. 2012 Apr.

Abstract

Background: Hormone replacement therapy increases intimal hyperplasia (IH) following vascular intervention. Matrix metalloproteinases (MMPs) play a role in IH development. We have shown estrogen up-regulates MT1-MMP expression, a transmembrane protein that activates MMP-2, and increases vascular smooth muscle cell (VSMC) collagen invasion via increased MMP-2 activity. Here we hypothesize inhibition of MT1-MMP will prevent hormonally-stimulated increased MMP-2 activation and the downstream cellular processes of IH pathogenesis.

Methods: VSMCs from a postmenopausal donor were transfected with MT1-MMP or negative control siRNAs, treated with estrogen (Est), analyzed by q-PCR, Western blot, zymography, migration, invasion, and proliferation assays.

Results: Est treatment of MT1-MMP silenced cells still resulted in increased MT1-MMP expression (C = 41% ± 4%; Est = 52% ± 2%; P < 0.05). Silencing of MT1-MMP decreased basal MMP-2 activity (nonsilenced = 100%; MT1-silenced = 87% ± 3%; P < 0.05) but had no effect on basal invasion or proliferation. Est treatment of MT1-MMP silenced cells still resulted in increased MMP-2 activity (C = 87% ± 3%; Est = 101% ± 4%; P < 0.05) and invasion (C = 89% ± 6%; Est = 109% ± 3%; P < 0.05) compared with MT1-MMP silenced control cells. However, silencing of MT1-MMP did inhibit Est- and serum-stimulated proliferation (C = 106% ± 18%; Est = 104% ± 16%; FBS = 121% ± 24%; P = NS).

Conclusion: Silencing of MT1-MMP in aged VSMCs results in impaired but not complete inhibition of basal and Est-stimulated increases in MMP-2 activity. Other mechanisms appear to be playing a role in hormonally-regulated cellular processes of IH pathogenesis. Future studies will target other signaling cascades, with the goal of identifying mechanisms responsible for hormonally-modulated unbalanced MMPs. In vivo manipulation of the expression patterns of MT1-MMP will be examined for the prevention of IH in animal models of vascular disease.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources