Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Apr;16(3):131-9.
doi: 10.1016/j.etap.2003.11.008.

Comparison of Caco-2, IEC-18 and HCEC cell lines as a model for intestinal absorption of genistein, daidzein and their glycosides

Affiliations

Comparison of Caco-2, IEC-18 and HCEC cell lines as a model for intestinal absorption of genistein, daidzein and their glycosides

Aukje Steensma et al. Environ Toxicol Pharmacol. 2004 Apr.

Abstract

Genistein and daidzein receive much attention because of their potential to prevent hormone-related cancer and cardiovascular diseases. Limited information is available on the pharmacokinetics of these compounds like, for instance, intestinal uptake by humans and systematic bioavailability. In this study the transport and metabolism of genistein, daidzein and their glycosides has been compared in various cellular models for intestinal absorption such as human colonic Caco-2, rat small intestinal IEC-18 and human immortalized colon HCEC cell lines. Genistein and daidzein were taken up by Caco-2, IEC-18 and HCEC cells and transported to almost same rate and extents. Glycosides were transported across IEC-18 and HCEC monolayers, but not across Caco-2 cells. In Caco-2 and IEC-18 cells, the glycosides were metabolized to their respective aglycones. Furthermore, it was shown that genistein and daidzein were glucuronidated and sulfated in Caco-2 cells, to glucuronidated forms in IEC-18 cells and to sulfated conjugates in HCEC cells. The results of this study compared with reported in vivo data indicate that Caco-2 cells are a valuable model for studying intestinal transport and metabolism of isoflavones.

PubMed Disclaimer

LinkOut - more resources