Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum
- PMID: 21784914
- PMCID: PMC3187166
- DOI: 10.1128/AEM.00575-11
Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum
Abstract
L-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP.
Figures



Similar articles
-
Impact of CO2/HCO3- Availability on Anaplerotic Flux in Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum Strains.J Bacteriol. 2019 Sep 20;201(20):e00387-19. doi: 10.1128/JB.00387-19. Print 2019 Oct 15. J Bacteriol. 2019. PMID: 31358612 Free PMC article.
-
Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum.J Ind Microbiol Biotechnol. 2017 Jul;44(7):1115-1126. doi: 10.1007/s10295-017-1933-0. Epub 2017 Mar 16. J Ind Microbiol Biotechnol. 2017. PMID: 28303352
-
Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB.J Gen Appl Microbiol. 2014;60(3):112-8. doi: 10.2323/jgam.60.112. J Gen Appl Microbiol. 2014. PMID: 25008167
-
The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering.J Biotechnol. 2014 Dec 20;192 Pt B:339-45. doi: 10.1016/j.jbiotec.2013.12.019. Epub 2014 Jan 29. J Biotechnol. 2014. PMID: 24486441 Review.
-
Pathway analysis and metabolic engineering in Corynebacterium glutamicum.Biol Chem. 2000 Sep-Oct;381(9-10):899-910. doi: 10.1515/BC.2000.111. Biol Chem. 2000. PMID: 11076021 Review.
Cited by
-
Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions.Appl Environ Microbiol. 2013 Feb;79(4):1250-7. doi: 10.1128/AEM.02806-12. Epub 2012 Dec 14. Appl Environ Microbiol. 2013. PMID: 23241971 Free PMC article.
-
Engineering of microbial cells for L-valine production: challenges and opportunities.Microb Cell Fact. 2021 Aug 30;20(1):172. doi: 10.1186/s12934-021-01665-5. Microb Cell Fact. 2021. PMID: 34461907 Free PMC article. Review.
-
NADPH-generating systems in bacteria and archaea.Front Microbiol. 2015 Jul 29;6:742. doi: 10.3389/fmicb.2015.00742. eCollection 2015. Front Microbiol. 2015. PMID: 26284036 Free PMC article. Review.
-
13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production.Bioengineering (Basel). 2015 Dec 25;3(1):3. doi: 10.3390/bioengineering3010003. Bioengineering (Basel). 2015. PMID: 28952565 Free PMC article. Review.
-
Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds.Microb Cell Fact. 2014 Sep 9;13(1):126. doi: 10.1186/s12934-014-0126-z. Microb Cell Fact. 2014. PMID: 25200799 Free PMC article. Review.
References
-
- Bartek T., et al. 2010. Importance of NADPH supply for improved l-valine formation in Corynebacterium glutamicum. Biotechnol. Prog. 26:361–371 - PubMed
-
- Bartek T., Makus P., Klein B., Lang S., Oldiges M. 2008. Influence of l-isoleucine and pantothenate auxotrophy for l-valine formation in Corynebacterium glutamicum revisited by metabolome analyses. Bioprocess Biosyst. Eng. 31:217–225 - PubMed
-
- Bartek T., et al. 2010. Studies on substrate utilisation in l-valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex. Bioprocess Biosyst. Eng. 33:873–883 - PubMed
-
- Bartek T., et al. 2010. Analysing overexpression of l-valine biosynthesis genes in pyruvate-dehydrogenase-deficient Corynebacterium glutamicum. J. Ind. Microbiol. Biotechnol. 37:263–270 - PubMed
-
- Blombach B., Schreiner M. E., Bartek T., Oldiges M., Eikmanns B. J. 2008. Corynebacterium glutamicum tailored for high-yield l-valine production. Appl. Microbiol. Biotechnol. 79:471–479 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases