Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov-Dec;4(6):1183-8.
doi: 10.3892/mmr.2011.539. Epub 2011 Jul 22.

Testosterone suppresses oxidative stress via androgen receptor-independent pathway in murine cardiomyocytes

Affiliations

Testosterone suppresses oxidative stress via androgen receptor-independent pathway in murine cardiomyocytes

Li Zhang et al. Mol Med Rep. 2011 Nov-Dec.

Abstract

Evidence supports that oxidative stress exerts significant effects on the pathogenesis of heart dysfunction. On the other hand, the presence of specific androgen receptor (AR) in mammalian cardiomyocytes implies that androgen plays a physiological role in cardiac function, myocardial injury and the regulation of the redox state in the heart. This study used the testicular feminized (Tfm) and castrated male mice to investigate the effects of testosterone deficiency, physiological testosterone therapy and AR on oxidative stress in cardiomyocytes. Tfm mice have a non-functional AR and reduced circulating testosterone levels. Male littermates and Tfm mice were separated into 5 experimental groups: non-castrated littermate controls, castrated littermates, sham-operated Tfm, testosterone-treated castrated littermates and testosterone-treated sham-operated Tfm mice. Cardiomyocytes that were isolated from the left ventricle were used for determination of superoxide dismutase (SOD), glutathione peroxidase (GSH‑Px) enzyme activities, and malondialdehyde (MDA) levels. Additionally, mitochondrial DNA (mtDNA) deletion mutations were detected by nested PCR. The SOD and GSH-Px enzyme activities of cardiomyocytes were decreased, and the MDA levels and the proportion of mtDNA mutations were increased in castrated and sham-operated Tfm mice compared to control mice. However, an increase was observed in the activities of SOD and GSH-Px enzyme as well as a decrease in MDA levels and the proportion of mtDNA mutations in the mice that had received testosterone therapy. These changes were statistically similar in castrated and sham-operated Tfm mice after testosterone therapy. In conclusion, it is testosterone deficiency that induces oxidative stress in cardiomyocytes. Physiological testosterone therapy is able to suppress oxidative stress mediated via the AR-independent pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources