Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar 9;1051(3):221-9.
doi: 10.1016/0167-4889(90)90126-x.

Isolation and characterization of Chinese hamster ovary cell mutants defective in glucose transport

Affiliations

Isolation and characterization of Chinese hamster ovary cell mutants defective in glucose transport

K Hasegawa et al. Biochim Biophys Acta. .

Abstract

Cultured Chinese hamster ovary (CHO) cells possess an insulin-sensitive facilitated diffusion system for glucose transport. Mutant clones of CHO cells defective in glucose transport were obtained by repeating the selection procedure, which involved mutagenesis with ethyl methanesulfonate, radiation suicide with tritiated 2-deoxy-D-glucose, the polyester replica technique and in situ autoradiographic assaying for glucose accumulation. On the first selection, we obtained mutants exhibiting about half the glucose uptake activity of parental CHO-K1 cells and half the amount of a glucose transporter, the amount of which was determined by immunoblotting with an antibody to the human erythrocyte glucose transporter. The second selection, starting from one of the mutants obtained in the first-step selection, yielded a strain, GTS-31, in which both glucose uptake activity and the quantity of the glucose transporter were 10-20% of the levels in CHO-K1 cells, whereas the responsiveness of glucose transport to insulin, and the activities of leucine uptake and several glycolytic enzymes remained unchanged. GTS-31 cells grew slower than CHO-K1 cells at both 33 and 40 degrees C, and in a medium containing a low concentration of glucose (0.1 mM), the mutant cells lost the ability to form colonies. All the three spontaneous GTS-31 cell revertants, which were isolated by growing the mutant cells in medium containing 0.1 mM glucose, exhibited about half the glucose uptake activity and about half the amount of glucose transporter, as compared to in CHO-K1 cells, these characteristics being similar to those of the first-step mutant. These results indicate that the decrease in glucose uptake activity in strain GTS-31 is due to a mutation which induces a reduction in the amount of the glucose transporter, providing genetic evidence that the glucose transporter functions as a major route for glucose entry into CHO-K1 cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources