Energy requirements for maltose transport in yeast
- PMID: 21792
- DOI: 10.1111/j.1432-1033.1977.tb11861.x
Energy requirements for maltose transport in yeast
Abstract
Maltose transport in yeast (Saccharomyces cerevisiae) is inhibited by uncouplers under conditions where the intracellular concentration of the sugar is lower than in the medium. The uncouplers did not deplete the ATP content of the yeast cells and a 50--100-fold reduction in ATP caused by antimycin and 2-deoxyglucose had no effect on maltose transport. In ATP-depleted cells, the maltose transported is partially hydrolyzed to glucose but not further metabolized and therefore a mechanism of transport involving phosphorylation can be discarded. One proton is cotransported with every maltose molecule. The fact that maltose transport is inhibited by KCl but not by NaCl, Tris-Cl or KSCN suggest that the electroneutrality during maltose and proton uptake can be maintained by the exit of K+ from the cells or by the entry of a permeable anion as SCN-. These results indicate that the translocation of maltose across the yeast plasma membrane is not dependent on ATP and is coupled to the electrochemical gradient of protons in this membrane. When this gradient is abolished by uncouplers, the transport system is not able to function even in favour of a concentration gradient of the sugar.
Similar articles
-
Active transport of L-sorbose and 2-deoxy-D-galactose in Saccharomyces fragilis.Biochim Biophys Acta. 1977 Sep 19;469(3):292-300. doi: 10.1016/0005-2736(77)90165-1. Biochim Biophys Acta. 1977. PMID: 20143
-
Dual system for potassium transport in Saccharomyces cerevisiae.J Bacteriol. 1984 Sep;159(3):940-5. doi: 10.1128/jb.159.3.940-945.1984. J Bacteriol. 1984. PMID: 6384187 Free PMC article.
-
Transport kinetics of 6-deoxy-D-glucose in Candida parapsilosis.Folia Microbiol (Praha). 1978;23(1):18-26. doi: 10.1007/BF02876591. Folia Microbiol (Praha). 1978. PMID: 23984
-
Energy coupling in periplasmic permeases: the histidine permease as a model system.Res Microbiol. 1990 Mar-Apr;141(3):341-8. doi: 10.1016/0923-2508(90)90009-f. Res Microbiol. 1990. PMID: 2177913 Review. No abstract available.
-
Sugar transport in Saccharomyces cerevisiae.FEMS Microbiol Rev. 1993 Apr;10(3-4):229-42. doi: 10.1016/0378-1097(93)90598-v. FEMS Microbiol Rev. 1993. PMID: 8318258 Review.
Cited by
-
Effect of C-terminal protein tags on pentitol and L-arabinose transport by Ambrosiozyma monospora Lat1 and Lat2 transporters in Saccharomyces cerevisiae.Appl Environ Microbiol. 2014 May;80(9):2737-45. doi: 10.1128/AEM.04067-13. Epub 2014 Feb 21. Appl Environ Microbiol. 2014. PMID: 24561586 Free PMC article.
-
Mechanisms of appearance of the Pasteur effect in Saccharomyces cerevisiae: inactivation of sugar transport systems.J Bacteriol. 1982 Oct;152(1):19-25. doi: 10.1128/jb.152.1.19-25.1982. J Bacteriol. 1982. PMID: 6749805 Free PMC article.
-
Chemostat cultivation as a tool for studies on sugar transport in yeasts.Microbiol Rev. 1994 Dec;58(4):616-30. doi: 10.1128/mr.58.4.616-630.1994. Microbiol Rev. 1994. PMID: 7854249 Free PMC article. Review.
-
Identification and characterization of the maltose permease in genetically defined Saccharomyces strain.J Bacteriol. 1989 Nov;171(11):6148-54. doi: 10.1128/jb.171.11.6148-6154.1989. J Bacteriol. 1989. PMID: 2808304 Free PMC article.
-
Proton-solute coupling mechanism of the maltose transporter from Saccharomyces cerevisiae.Sci Rep. 2017 Oct 30;7(1):14375. doi: 10.1038/s41598-017-14438-1. Sci Rep. 2017. PMID: 29084970 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources