Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov;32(11):2109.e1-14.
doi: 10.1016/j.neurobiolaging.2011.05.025. Epub 2011 Jul 27.

Altered intrinsic neuronal excitability and reduced Na+ currents in a mouse model of Alzheimer's disease

Affiliations

Altered intrinsic neuronal excitability and reduced Na+ currents in a mouse model of Alzheimer's disease

Jon T Brown et al. Neurobiol Aging. 2011 Nov.

Abstract

Transgenic mice that overproduce beta-amyloid (Aβ) peptides can exhibit central nervous system network hyperactivity. Patch clamp measurements from CA1 pyramidal cells of PSAPP and wild type mice were employed to investigate if altered intrinsic excitability could contribute to such network hyperfunction. At approximately 10 months, when PSAPP mice have a substantial central nervous system Aβ load, resting potential and input resistance were genotype-independent. However, PSAPP mice exhibited a substantially more prominent action potential (AP) burst close to the onset of weak depolarizing current stimuli. The spike afterdepolarization (ADP) was also larger in PSAPP mice. The rate of rise, width and height of APs were reduced in PSAPP animals; AP threshold was unaltered. Voltage-clamp recordings from nucleated macropatches revealed that somatic Na(+) current density was depressed by approximately 50% in PSAPP mice. K(+) current density was unaltered. All genotype-related differences were absent in PSAPP mice aged 5-7 weeks which lack a substantial Aβ load. We conclude that intrinsic neuronal hyperexcitability and changes to AP waveforms may contribute to neurophysiological deficits that arise as a consequence of Aβ accumulation.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources