Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct;1811(10):565-77.
doi: 10.1016/j.bbalip.2011.07.009. Epub 2011 Jul 23.

Enzymatic formation of N-acylethanolamines from N-acylethanolamine plasmalogen through N-acylphosphatidylethanolamine-hydrolyzing phospholipase D-dependent and -independent pathways

Affiliations

Enzymatic formation of N-acylethanolamines from N-acylethanolamine plasmalogen through N-acylphosphatidylethanolamine-hydrolyzing phospholipase D-dependent and -independent pathways

Kazuhito Tsuboi et al. Biochim Biophys Acta. 2011 Oct.

Abstract

Bioactive N-acylethanolamines include anandamide (an endocannabinoid), N-palmitoylethanolamine (an anti-inflammatory), and N-oleoylethanolamine (an anorexic). In the brain, these molecules are formed from N-acylphosphatidylethanolamines (NAPEs) by a specific phospholipase D, called NAPE-PLD, or through NAPE-PLD-independent multi-step pathways, as illustrated in the current study employing NAPE-PLD-deficient mice. Although N-acylethanolamine plasmalogen (1-alkenyl-2-acyl-glycero-3-phospho(N-acyl)ethanolamine, pNAPE) is presumably a major class of N-acylethanolamine phospholipids in the brain, its enzymatic conversion to N-acylethanolamines is poorly understood. In the present study, we focused on the formation of N-acylethanolamines from pNAPEs. While recombinant NAPE-PLD catalyzed direct release of N-palmitoylethanolamine from N-palmitoylethanolamine plasmalogen, the same reaction occurred in the brain homogenate of NAPE-PLD-deficient mice, suggesting that this reaction occurs through both the NAPE-PLD-dependent and -independent pathways. Liquid chromatography-mass spectrometry revealed a remarkable accumulation of 1-alkenyl-2-hydroxy-glycero-3-phospho(N-acyl)ethanolamines (lyso pNAPEs) in the brain of NAPE-PLD-deficient mice. We also found that brain homogenate formed N-palmitoylethanolamine, N-oleoylethanolamine, and anandamide from their corresponding lyso pNAPEs by a Mg(2+)-dependent "lysophospholipase D". Moreover, the brain levels of alkenyl-type lysophosphatidic acids, the other products from lyso pNAPEs by lysophospholipase D, also increased in NAPE-PLD-deficient mice. Glycerophosphodiesterase GDE1 can hydrolyze glycerophospho-N-acylethanolamines to N-acylethanolamines in the brain. In addition, we discovered that recombinant GDE1 has a weak activity to generate N-palmitoylethanolamine from its corresponding lyso pNAPE, suggesting that this enzyme is at least in part responsible for the lysophospholipase D activity. These results strongly suggest that brain tissue N-acylethanolamines, including anandamide, can be formed from N-acylated plasmalogen through an NAPE-PLD-independent pathway as well as by their direct release via NAPE-PLD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources