Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2011 Nov-Dec;25(9):819-29.
doi: 10.1177/1545968311411056. Epub 2011 Jul 29.

Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients

Affiliations
Randomized Controlled Trial

Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients

Nadia Bolognini et al. Neurorehabil Neural Repair. 2011 Nov-Dec.

Abstract

Background: Recovery of motor function after stroke may depend on a balance of activity in the neural network involving the affected and the unaffected motor cortices.

Objective: To assess whether transcranial direct current stimulation (tDCS) can increase the training-induced recovery of motor functions.

Methods: In an exploratory study, 14 patients with chronic stroke and mean Fugl-Meyer Upper Extremity Motor Assessment of 29 (range = 8-50) entered a double-blind sham-controlled study, aimed to investigate neurophysiological and behavioral effects of bihemispheric tDCS (cathodal stimulation of the unaffected motor cortex and anodal stimulation of the affected motor cortex), combined with constraint-induced movement therapy (CIMT).

Results: Patients in both groups demonstrated gains on primary outcome measures, that is, Jebsen Taylor Hand Function Test, Handgrip Strength, Motor Activity Log Scale, and Fugl-Meyer Motor Score. Gains were larger in the active tDCS group. Neurophysiological measurements showed a reduction in transcallosal inhibition from the intact to the affected hemisphere and increased corticospinal excitability in the affected hemisphere only in the active tDCS/CIMT group. Such neurophysiological changes correlated with the magnitude of the behavioral gains. Both groups showed a reduction in corticospinal excitability of the unaffected hemisphere.

Conclusions: CIMT alone appears effective in modulating local excitability but not in removing the imbalance in transcallosal inhibition. Bihemispheric tDCS may achieve this goal and foster greater functional recovery.

PubMed Disclaimer

Publication types

MeSH terms