Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011;131(8):1171-82.
doi: 10.1248/yakushi.131.1171.

[Modeling the transition state of enzyme-catalyzed phosphoryl transfer reaction using QM/MM method]

[Article in Japanese]
Affiliations
Free article
Review

[Modeling the transition state of enzyme-catalyzed phosphoryl transfer reaction using QM/MM method]

[Article in Japanese]
Suyong Re et al. Yakugaku Zasshi. 2011.
Free article

Abstract

Reversible phosphorylation of proteins is a post-translational modification that regulates diverse biological processes. The molecular mechanism underlying phosphoryl transfer catalyzed by enzymes, in particular the nature of transition state (TS), remains a subject of active debate. Structural evidence supports an associative TS, whereas physical organic studies point to a dissociative character. In this article, we briefly introduce our recent effort using the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations to resolve the controversy. We perform QM/MM simulations for the reversible phosphorylation of phosphoserine phosphatase (PSP), which belongs to one of the largest phosphotransferase families characterized to data. Both phosphorylation and dephosphorylation reactions are investigated based on the two-dimensional energy surfaces along phosphoryl and proton transfer coordinates. The resultant structures of the active site at TS in both reactions have compact geometries but a less electron density of the phosphoryl group. This suggests that the TS of PSP has a geometrically associative yet electronically dissociative character and strongly depends on proton transfer being coupled with phosphoryl transfer. Structure and literature database searches on phosphotransferases suggest that such a hybrid TS is consistent with many structures and physical organic studies and likely holds for most enzymes catalyzing phosphoryl transfer.

PubMed Disclaimer

Similar articles