Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011:7:866-77.
doi: 10.3762/bjoc.7.99. Epub 2011 Jun 28.

Gold-catalyzed propargylic substitutions: Scope and synthetic developments

Affiliations

Gold-catalyzed propargylic substitutions: Scope and synthetic developments

Olivier Debleds et al. Beilstein J Org Chem. 2011.

Abstract

This personal account summarizes our recent developments in gold-catalyzed direct substitutions on propargylic (allylic, benzylic) alcohols, with various nucleophiles (and bi-nucleophiles) based on the σ- and/or π-acidity of gold(III) complexes. Synthetic developments are also briefly described.

Keywords: direct substitutions; gold; isoxazolines; propargylic substitutions.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1
Gold-catalyzed propargylic substitutions.
Scheme 2
Scheme 2
Propargylic substitution: scope of substrates.
Scheme 3
Scheme 3
Propargylic substitutions on allylic/propargylic substrates.
Scheme 4
Scheme 4
Direct propargylic substitutions: Scope of nucleophiles.
Scheme 5
Scheme 5
Meyer–Schuster rearrangements.
Scheme 6
Scheme 6
Silyl-protected propargyl alcohols in propargylic substitutions.
Scheme 7
Scheme 7
Acetylacetone as nucleophile in direct propargylic substitution.
Scheme 8
Scheme 8
Enantiomerically enriched propargylic alcohols.
Scheme 9
Scheme 9
Scope of ‘activated’ alcohols in direct substitution reactions.
Scheme 10
Scheme 10
BF3 vs AuCl3 in propargylic substitutions [25].
Scheme 11
Scheme 11
The use of bis-nucleophiles in direct propargylic substitutions.
Scheme 12
Scheme 12
Tandem reactions from protected hydroxylamines and propargylic alcohols. P = Cbz, PhSO2.
Scheme 13
Scheme 13
Tentative hydrolysis of bis-adduct 24a.
Scheme 14
Scheme 14
Iron-catalyzed propargylic substitutions.
Scheme 15
Scheme 15
Isoxazolines formation.
Scheme 16
Scheme 16
Addition of nucleophiles to isoxazolines.
Scheme 17
Scheme 17
Potential mechanistic pathways.
Scheme 18
Scheme 18
Synthesis of furans from homoproargylic alcohols.
Scheme 19
Scheme 19
Synthesis of furans.
Scheme 20
Scheme 20
Propargylic substitutions: Synthetic applications. GH2 = Grubbs–Hoveyda 2nd generation catalyst.

Similar articles

Cited by

References

    1. Constable D J C, Dunn P J, Hayler J D, Humphrey G R, Leazer J L, Linderman R J, Lorenz K, Manley J, Pearlman B A, Wells A, et al. Green Chem. 2007;9:411–420. doi: 10.1039/b703488c. - DOI
    1. Bandini M, Tragni M. Org Biomol Chem. 2009;7:1501–1507. doi: 10.1039/b823217b. - DOI - PubMed
    1. Emer E, Sinisi R, Capdevila M G, Petruzziello D, De Vincentiis F, Cozzi P G. Eur J Org Chem. 2011:647–666. doi: 10.1002/ejoc.201001474. - DOI
    1. Cozzi P G, Benfatti F. Angew Chem, Int Ed. 2010;49:256–259. doi: 10.1002/anie.200905235. - DOI - PubMed
    1. Bisaro F, Prestat G, Vitale M, Poli G. Synlett. 2002:1823–1826. doi: 10.1055/s-2002-34884. - DOI

LinkOut - more resources