Molecular architecture of basement membranes
- PMID: 2180767
- DOI: 10.1096/fasebj.4.6.2180767
Molecular architecture of basement membranes
Abstract
Basement membranes are specialized extracellular matrices with support, sieving, and cell regulatory functions. The molecular architectures of these matrices are created through specific binding interactions between unique glycoprotein and proteoglycan protomers. Type IV collagen chains, using NH2-terminal, COOH-terminal, and lateral association, form a covalently stabilized polygonal framework. Laminin, a four-armed glycoprotein, self-assembles through terminal-domain interactions to form a second polymer network, Entactin/nidogen, a dumbbell-shaped sulfated glycoprotein, binds laminin near its center and interacts with type IV collagen, bridging the two. A large heparan sulfate proteoglycan, important for charge-dependent molecular sieving, is firmly anchored in the basement membrane and can bind itself through a core-protein interaction to form dimers and oligomers and bind laminin and type IV collagen through its glycosaminoglycan chains. Heterogeneity of structure and function occur in different tissues, in development, and in response to different physiological needs. The molecular architecture of these matrices may be regulated during or after primary assembly through variations in compositions, isoform substitutions, and the modifying influence of exogenous macromolecules such as heparin and heparan sulfate.
Similar articles
-
Laminin, proteoglycan, nidogen and collagen IV: structural models and molecular interactions.Ciba Found Symp. 1984;108:25-43. doi: 10.1002/9780470720899.ch3. Ciba Found Symp. 1984. PMID: 6440757 Review.
-
High resolution immunoelectron microscopic localization of functional domains of laminin, nidogen, and heparan sulfate proteoglycan in epithelial basement membrane of mouse cornea reveals different topological orientations.J Cell Biol. 1988 Oct;107(4):1599-610. doi: 10.1083/jcb.107.4.1599. J Cell Biol. 1988. PMID: 2459133 Free PMC article.
-
Basement-membrane heparan sulfate proteoglycan binds to laminin by its heparan sulfate chains and to nidogen by sites in the protein core.Eur J Biochem. 1992 Sep 1;208(2):359-66. doi: 10.1111/j.1432-1033.1992.tb17195.x. Eur J Biochem. 1992. PMID: 1521532
-
The incubation of laminin, collagen IV, and heparan sulfate proteoglycan at 35 degrees C yields basement membrane-like structures.J Cell Biol. 1989 Apr;108(4):1567-74. doi: 10.1083/jcb.108.4.1567. J Cell Biol. 1989. PMID: 2522456 Free PMC article.
-
Basement membrane proteins: structure, assembly, and cellular interactions.Crit Rev Biochem Mol Biol. 1992;27(1-2):93-127. doi: 10.3109/10409239209082560. Crit Rev Biochem Mol Biol. 1992. PMID: 1309319 Review.
Cited by
-
Biochemical and biophysical changes underlie the mechanisms of basement membrane disruptions in a mouse model of dystroglycanopathy.Matrix Biol. 2013 Apr 24;32(3-4):196-207. doi: 10.1016/j.matbio.2013.02.002. Epub 2013 Feb 27. Matrix Biol. 2013. PMID: 23454088 Free PMC article.
-
Collagen type IV as the link between arterial stiffness and dementia.Am J Transl Res. 2023 Oct 15;15(10):5961-5971. eCollection 2023. Am J Transl Res. 2023. PMID: 37969177 Free PMC article. Review.
-
Clinicopathological significance of heparanase and basic fibroblast growth factor expression in human esophageal cancer.World J Gastroenterol. 2005 Apr 14;11(14):2188-92. doi: 10.3748/wjg.v11.i14.2188. World J Gastroenterol. 2005. PMID: 15810091 Free PMC article.
-
Effect of brown spider venom on basement membrane structures.Histochem J. 2000 Jul;32(7):397-408. doi: 10.1023/a:1004031019827. Histochem J. 2000. PMID: 10987503
-
Basement membrane and stroke.J Cereb Blood Flow Metab. 2019 Jan;39(1):3-19. doi: 10.1177/0271678X18801467. Epub 2018 Sep 18. J Cereb Blood Flow Metab. 2019. PMID: 30226080 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources