Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions
- PMID: 21808009
- PMCID: PMC3158210
- DOI: 10.1073/pnas.1101328108
Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions
Abstract
How do we make decisions when confronted with several alternatives (e.g., on a supermarket shelf)? Previous work has shown that accumulator models, such as the drift-diffusion model, can provide accurate descriptions of the psychometric data for binary value-based choices, and that the choice process is guided by visual attention. However, the computational processes used to make choices in more complicated situations involving three or more options are unknown. We propose a model of trinary value-based choice that generalizes what is known about binary choice, and test it using an eye-tracking experiment. We find that the model provides a quantitatively accurate description of the relationship between choice, reaction time, and visual fixation data using the same parameters that were estimated in previous work on binary choice. Our findings suggest that the brain uses similar computational processes to make binary and trinary choices.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
-
The attentional drift-diffusion model extends to simple purchasing decisions.Front Psychol. 2012 Jun 13;3:193. doi: 10.3389/fpsyg.2012.00193. eCollection 2012. Front Psychol. 2012. PMID: 22707945 Free PMC article.
-
Visual fixations and the computation and comparison of value in simple choice.Nat Neurosci. 2010 Oct;13(10):1292-8. doi: 10.1038/nn.2635. Epub 2010 Sep 12. Nat Neurosci. 2010. PMID: 20835253
-
An attentional drift diffusion model over binary-attribute choice.Cognition. 2017 Nov;168:34-45. doi: 10.1016/j.cognition.2017.06.007. Epub 2017 Jun 21. Cognition. 2017. PMID: 28646751
-
The multiattribute linear ballistic accumulator model of context effects in multialternative choice.Psychol Rev. 2014 Apr;121(2):179-205. doi: 10.1037/a0036137. Psychol Rev. 2014. PMID: 24730597 Review.
-
The description-experience gap in risky choice.Trends Cogn Sci. 2009 Dec;13(12):517-23. doi: 10.1016/j.tics.2009.09.004. Epub 2009 Oct 14. Trends Cogn Sci. 2009. PMID: 19836292 Review.
Cited by
-
The central extended amygdala guides survival-relevant tradeoffs: Implications for understanding common psychiatric disorders.Neurosci Biobehav Rev. 2022 Nov;142:104879. doi: 10.1016/j.neubiorev.2022.104879. Epub 2022 Sep 15. Neurosci Biobehav Rev. 2022. PMID: 36115597 Free PMC article.
-
Neural dynamics and circuit mechanisms of decision-making.Curr Opin Neurobiol. 2012 Dec;22(6):1039-46. doi: 10.1016/j.conb.2012.08.006. Epub 2012 Sep 28. Curr Opin Neurobiol. 2012. PMID: 23026743 Free PMC article. Review.
-
More Than Meets the Eye: The Impact of Materialism on Information Selection During Luxury Choices.Front Behav Neurosci. 2018 Aug 24;12:172. doi: 10.3389/fnbeh.2018.00172. eCollection 2018. Front Behav Neurosci. 2018. PMID: 30197590 Free PMC article.
-
Perceptual salience influences food choices independently of health and taste preferences.Cogn Res Princ Implic. 2020 Jan 3;5(1):2. doi: 10.1186/s41235-019-0203-2. Cogn Res Princ Implic. 2020. PMID: 31900744 Free PMC article.
-
The formation of preference in risky choice.PLoS Comput Biol. 2019 Aug 29;15(8):e1007201. doi: 10.1371/journal.pcbi.1007201. eCollection 2019 Aug. PLoS Comput Biol. 2019. PMID: 31465438 Free PMC article.
References
-
- Gold JI, Shadlen MN. The neural basis of decision making. Annu Rev Neurosci. 2007;30:535–574. - PubMed
-
- Bogacz R. Optimal decision-making theories: Linking neurobiology with behaviour. Trends Cogn Sci. 2007;11:118–125. - PubMed
-
- Smith PL, Ratcliff R. Psychology and neurobiology of simple decisions. Trends Neurosci. 2004;27:161–168. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources