Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar 25;265(9):4953-7.

Ca2(+)-dependent interactions between the C-helix of troponin-C and troponin-I. Photocross-linking and fluorescence studies using a recombinant troponin-C

Affiliations
  • PMID: 2180953
Free article

Ca2(+)-dependent interactions between the C-helix of troponin-C and troponin-I. Photocross-linking and fluorescence studies using a recombinant troponin-C

Z Y Wang et al. J Biol Chem. .
Free article

Abstract

We have used in vitro mutagenesis to synthesize in Escherichia coli a recombinant rabbit skeletal troponin-C (designated as TnC57) in which Cys-98 was replaced with leucine, and Ala-57 in the C-helix of the N-terminal domain was replaced with cysteine. TnC57 labeled with the bifunctional photocross-linker benzophenone-4-maleimide could be photocross-linked with troponin-I in both the binary complex with troponin-I and in the ternary complex with troponin-I and troponin-T. The fluorescence lifetime of TnC57 labeled with the probe N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine decreased from 13.2 +/- 0.1 to 11.8 +/- 0.1 ns when Ca2+ bound to the low affinity triggering sites. Complexation with either troponin-I or both troponin-I and troponin-T resulted in significant increases in this lifetime both in the absence and the presence of Ca2+. In either the binary or the ternary complex, this lifetime increased from 15.5 to 18.0 ns upon Ca2+ binding to the low affinity sites. Complementary acrylamide-quenching studies yielded results that are consistent with the fluorescence lifetime results. Our results show that the C-helix of troponin-C interacts with troponin-I, in confirmation of recent zero-length cross-linking results (Leszyk, J., Grabarek, Z., Gergely, J., and Collins, J.H. (1990) Biochemistry 29, 299-304). Moreover, they are in support of a model (Herzberg, O., Moult, J., and James, M.N.G. (1986) J. Biol. Chem. 261, 2638-2644) in which the binding of Ca2+ to the triggering sites in the N-terminal domain of troponin-C results in the movement of the B- and C-helices away from the central helix, thereby exposing a putative hydrophobic binding site for troponin-I.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources