Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug 2:10:128.
doi: 10.1186/1476-511X-10-128.

The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice

Affiliations

The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice

Michal Hensler et al. Lipids Health Dis. .

Abstract

Background: Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) of marine origin exert multiple beneficial effects on health. Our previous study in mice showed that reduction of adiposity by LC n-3 PUFA was associated with both, a shift in adipose tissue metabolism and a decrease in tissue cellularity. The aim of this study was to further characterize the effects of LC n-3 PUFA on fat cell proliferation and differentiation in obese mice.

Methods: A model of inducible and reversible lipoatrophy (aP2-Cre-ERT2 PPARγL2/L2 mice) was used, in which the death of mature adipocytes could be achieved by a selective ablation of peroxisome proliferator-activated receptor γ in response to i.p. injection of tamoxifen. Before the injection, obesity was induced in male mice by 8-week-feeding a corn oil-based high-fat diet (cHF) and, subsequently, mice were randomly assigned (day 0) to one of the following groups: (i) mice injected by corn-oil-vehicle only, i.e."control" mice, and fed cHF; (ii) mice injected by tamoxifen in corn oil, i.e. "mutant" mice, fed cHF; (iii) control mice fed cHF diet with15% of dietary lipids replaced by LC n-3 PUFA concentrate (cHF+F); and (iv) mutant mice fed cHF+F. Blood and tissue samples were collected at days 14 and 42.

Results: Mutant mice achieved a maximum weight loss within 10 days post-injection, followed by a compensatory body weight gain, which was significantly faster in the cHF as compared with the cHF+F mutant mice. Also in control mice, body weight gain was depressed in response to dietary LC n-3 PUFA. At day 42, body weights in all groups stabilized, with no significant differences in adipocyte size between the groups, although body weight and adiposity was lower in the cHF+F as compared with the cHF mice, with a stronger effect in the mutant than in control mice. Gene expression analysis documented depression of adipocyte maturation during the reconstitution of adipose tissue in the cHF+F mutant mice.

Conclusion: Dietary LC n-3 PUFA could reduce both hypertrophy and hyperplasia of fat cells in vivo. Results are in agreement with the involvement of fat cell turnover in control of adiposity.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Growth characteristics. After 8 weeks of high-fat (cHF) feeding, mice were randomly assigned to one of the following groups: (i) control mice, fed cHF (cHF PPARγad+/+); (ii) mutant mice, fed cHF (cHF PPARγad-/-); (iii) control mice, fed cHF enriched by LC n-3 PUFA (cHF+F PPARγad+/+); and (iv) mutant mice, fed cHF+F (cHF+F PPARγad-/-). Part of mice were killed at day 14, while the remaining mice were killed at day 42. A Body weights; B Frequency distribution of adipocyte cell surface area in epididymal fat at day 42. Data are means ± SE; n = 10.
Figure 2
Figure 2
Analysis of gene expression in epididymal fat. Transcript levels were measured using qRT-PCR in total RNA isolated from epididymal fat at day 14 or day 42. Scd-1, stearoyl-Coenzyme A desaturase 1; Cidec, cell death-inducing DFFA-like effector c; Pgc-1α, peroxisome proliferative activated receptor γ, coactivator 1 alpha; Pparα, peroxisome proliferator activated receptor α; Cox3, cytochrome c oxidase subunit III. Data are means ± SE; n = 10; a, b, c - significant differences compared to cHF PPARγad+/+, cHF+F PPARγad+/+, and cHF PPARγad-/-, respectively.

Similar articles

Cited by

References

    1. Flachs P, Rossmeisl M, Bryhn M, Kopecky J. Cellular and molecular effects of n-3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clinical Sciences. 2009;116:1–16. doi: 10.1042/CS20070456. - DOI - PubMed
    1. Ruzickova J, Rossmeisl M, Prazak T, Flachs P, Sponarova J, Vecka M, Tvrzicka E, Bryhn M, Kopecky J. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids. 2004;39:1177–1185. doi: 10.1007/s11745-004-1345-9. - DOI - PubMed
    1. Jelenik T, Rossmeisl M, Kuda O, Jilkova ZM, Medrikova D, Kus V, Hensler M, Janovska P, Miksik I, Baranowski M, Gorski J, Hebrand S, Jensen TE, Flachs P, Hawley S, Viollet B, Kopecky J. AMP-activated protein kinase α2 subunit is required for the preservation of hepatic insulin sensitivity by n-3 polyunsaturated fatty acids. Diabetes. 2010;59:2737–2746. doi: 10.2337/db09-1716. - DOI - PMC - PubMed
    1. Kopecky J, Rossmeisl M, Flachs P, Kuda O, Brauner P, Jilkova Z, Stankova B, Tvrzicka E, Bryhn M. n-3 PUFA: bioavailability and modulation of adipose tissue function. Proc Nutr Soc. 2009;68:361–369. doi: 10.1017/S0029665109990231. - DOI - PubMed
    1. Flachs P, Horakova O, Brauner P, Rossmeisl M, Pecina P, Franssen-van Hal NL, Ruzickova J, Sponarova J, Drahota Z, Vlcek C, Keijer J, Houstek J, Kopecky J. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce beta-oxidation in white fat. Diabetologia. 2005;48:2365–2375. doi: 10.1007/s00125-005-1944-7. - DOI - PubMed

Publication types

MeSH terms