Is antiarrhythmic treatment in the elderly different? a review of the specific changes
- PMID: 21812498
- DOI: 10.2165/11591680-000000000-00000
Is antiarrhythmic treatment in the elderly different? a review of the specific changes
Abstract
Aging is associated with electrical and structural changes of the myocardium. The response to catecholamines is also reduced and the baroreceptor reflex activity is blunted. These aspects conceivably affect the response to antiarrhythmic drugs in the elderly. Furthermore, physiological parameters change in older age, affecting the pharmacokinetics of drugs. In this article, the literature on the pharmacokinetics and pharmacodynamics of antiarrhythmic drugs in elderly subjects is reviewed with the purpose of improving their optimal and safe prescription. Pharmacokinetic studies of antiarrhythmic drugs in the elderly are sparse, and there are no data available for procainamide and propafenone. Mean dose reductions calculated for elderly patients relative to younger patients are 60% for digoxin, 19% for diltiazem, 32% for disopyramide, 31% for flecainide, 40% for metoprolol, 35% for quinidine, 29% for sotalol and 26% for verapamil. No dose reductions are required for dofetilide or dronedarone. The clearance of dofetilide is not affected by age after correction for renal function. The dosage of dofetilide is individualized according to an algorithm based on the corrected QT (QTc) interval and renal function. Although the area under the plasma concentration-time curve (AUC) for dronedarone is larger in elderly patients, the dose should not be reduced because the registered dose has specifically been studied in an elderly population. In elderly patients with renal insufficiency, hepatic impairment, heart failure or certain genetic variants, the pharmacokinetics of antiarrhythmic drugs might be affected to an even greater extent, meaning additional dosage adjustments are necessary. With increasing age, the number of prescribed drugs increases because of co-morbidity, making interactions between drugs more likely. Several drugs interact with antiarrhythmic drugs, leading to clinically relevant changes in drug concentrations or AUC values. Furthermore, several drugs with non-cardiovascular indications appear to have QTc prolonging effects. The combination of these drugs with antiarrhythmic drugs that affect the QTc interval increases the risk of developing torsades de pointes and should therefore be avoided. Altered effects of drugs in the elderly can also be the result of age-related changes in the cardiovascular system. For example, atenolol and sotalol show greater effects, i.e. reductions in heart rate and increased probability of adverse effects, at a given plasma concentration in older subjects compared with younger subjects. It remains unclear whether old age as such is a determinant for reduced or modified efficacy of antiarrhythmic drugs. In a randomized study it was found that patients aged ≥65 years with atrial fibrillation had better survival with rate control than with rhythm control. However, different treatment strategies were compared and the results cannot be extrapolated to indicate better survival with a specific antiarrhythmic drug. Antiarrhythmic drugs will remain the first-line approach in most patients for the prevention or suppression of atrial and ventricular arrhythmias. As a rule of thumb, a 50% reduction in the starting dose of antiarrhythmic drugs compared with younger patients appears a wise approach in elderly patients. However, this does not apply to dofetilide and dronedarone. The selection of antiarrhythmic drugs in the elderly is predominantly determined by factors such as the treatment target, assumed patient compliance, possible drug interactions, co-morbidity, and renal and liver function. Efficacy and safety monitoring should take into account symptoms, ECG findings, rhythm recordings, plasma drug concentrations and other laboratory parameters.
Similar articles
-
Antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation.Cochrane Database Syst Rev. 2019 Sep 4;9(9):CD005049. doi: 10.1002/14651858.CD005049.pub5. Cochrane Database Syst Rev. 2019. PMID: 31483500 Free PMC article.
-
Old and new antiarrhythmic drugs for converting and maintaining sinus rhythm in atrial fibrillation: comparative efficacy and results of trials.Am J Cardiol. 2003 Mar 20;91(6A):15D-26D. doi: 10.1016/s0002-9149(02)03375-1. Am J Cardiol. 2003. PMID: 12670638 Review.
-
Antiarrhythmic drugs in patients with implantable cardioverter-defibrillators.Am J Cardiovasc Drugs. 2005;5(6):371-8. doi: 10.2165/00129784-200505060-00004. Am J Cardiovasc Drugs. 2005. PMID: 16259525 Review.
-
A benefit-risk assessment of class III antiarrhythmic agents.Drug Saf. 2002;25(12):847-65. doi: 10.2165/00002018-200225120-00003. Drug Saf. 2002. PMID: 12241126 Review.
-
A comparison of seven antiarrhythmic drugs in patients with ventricular tachyarrhythmias. Electrophysiologic Study versus Electrocardiographic Monitoring Investigators.N Engl J Med. 1993 Aug 12;329(7):452-8. doi: 10.1056/NEJM199308123290702. N Engl J Med. 1993. PMID: 8332150 Clinical Trial.
Cited by
-
Drug-microbiota interactions: an emerging priority for precision medicine.Signal Transduct Target Ther. 2023 Oct 9;8(1):386. doi: 10.1038/s41392-023-01619-w. Signal Transduct Target Ther. 2023. PMID: 37806986 Free PMC article. Review.
-
Cardiac drug therapy-considerations in the elderly.J Geriatr Cardiol. 2016 Dec;13(12):992-997. doi: 10.11909/j.issn.1671-5411.2016.12.008. J Geriatr Cardiol. 2016. PMID: 28321243 Free PMC article. Review.
-
Atrial fibrillation in the elderly.Drugs Aging. 2013 Aug;30(8):593-601. doi: 10.1007/s40266-013-0094-8. Drugs Aging. 2013. PMID: 23709402 Review.
-
Implications of aging in the treatment of complex arrhythmias.Aging (Albany NY). 2018 Oct 27;10(11):3048-3049. doi: 10.18632/aging.101620. Aging (Albany NY). 2018. PMID: 30368231 Free PMC article. No abstract available.
-
Influence of dronedarone (a class III antiarrhythmic drug) on the anticonvulsant potency of four classical antiepileptic drugs in the tonic-clonic seizure model in mice.J Neural Transm (Vienna). 2019 Feb;126(2):115-122. doi: 10.1007/s00702-018-1940-y. Epub 2018 Dec 8. J Neural Transm (Vienna). 2019. PMID: 30535773 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials