Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec;80(11):1182-97.
doi: 10.1038/ki.2011.254. Epub 2011 Aug 3.

The peroxisome proliferator-activated receptor-α agonist, BAY PP1, attenuates renal fibrosis in rats

Affiliations
Free article

The peroxisome proliferator-activated receptor-α agonist, BAY PP1, attenuates renal fibrosis in rats

Peter Boor et al. Kidney Int. 2011 Dec.
Free article

Abstract

Recent studies have shown renoprotective effects of the peroxisome proliferator-activated receptor-α (PPAR-α), but its role in kidney fibrosis is unknown. In order to gain insight into this, we examined the effect of a novel PPAR-α agonist, BAY PP1, in two rat models of renal fibrosis: unilateral ureteral obstruction and the 5/6 nephrectomy. In healthy animals, PPAR-α was expressed in tubular but not in interstitial cells. Upon induction of fibrosis, PPAR-α was significantly downregulated, and treatment with BAY PP1 significantly restored its expression. During ureteral obstruction, treatment with BAY PP1 significantly reduced tubulointerstitial fibrosis, proliferation of interstitial fibroblasts, and TGF-β(1) expression. Treatment with a less potent PPAR-α agonist, fenofibrate, had no effects. Treatment with BAY PP1, initiated in established disease in the 5/6 nephrectomy, halted the decline of renal function and significantly ameliorated renal fibrosis. In vitro, BAY PP1 had no direct effect on renal fibroblasts but reduced collagen, fibronectin, and TGF-β(1) expression in tubular cells. Conditioned media of BAY PP1-treated tubular cells reduced fibroblast proliferation. Thus, renal fibrosis is characterized by a reduction of PPAR-α expression, and treatment with BAY PP1 restores PPAR-α expression and ameliorates renal fibrosis by modulating the cross-talk between tubular cells and fibroblasts. Hence, potent PPAR-α agonists might be useful in the treatment of renal fibrosis.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

Substances