Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep;52(9):1465-73.
doi: 10.2967/jnumed.111.087668. Epub 2011 Aug 4.

Auger electron radioimmunotherapeutic agent specific for the CD123+/CD131- phenotype of the leukemia stem cell population

Affiliations
Free article

Auger electron radioimmunotherapeutic agent specific for the CD123+/CD131- phenotype of the leukemia stem cell population

Jeffrey Victor Leyton et al. J Nucl Med. 2011 Sep.
Free article

Abstract

Our aim was to construct and characterize (111)In-nuclear translocation sequence (NLS)-7G3, an Auger electron-emitting radioimmunotherapeutic agent that preferentially recognizes the expression of CD123 (interleukin-3 receptor [IL-3R] α-subchain) in the absence of CD131 (IL-3R β-subchain) displayed by leukemia stem cells.

Methods: Monoclonal antibody 7G3 was modified with 13-mer peptides [CGYGPKKKRKVGG] harboring the NLS of SV-40 large T-antigen and with diethylenetriaminepentaacetic acid for labeling with (111)In. Immunoreactivity was evaluated in a competition radioligand binding assay and by flow cytometry. Nuclear localization of (111)In-NLS-7G3 was studied by cell fractionation in CD123(+)/CD131(-) acute myelogenous leukemia (AML)-3, -4, and -5 cells or in primary AML or normal leukocytes. Micro-SPECT was performed in nonobese diabetic (NOD)/severe combined immune deficient (SCID) mice engrafted subcutaneously with Raji-CD123 tumors or with disseminated AML-3 or -5 cells. The cytotoxicity of (111)In-NLS-7G3 on AML-5 cells was studied after 7 d in culture by trypan blue dye exclusion. DNA damage was assessed using the γ-H2AX assay.

Results: NLS-7G3 exhibited preserved CD123 immunoreactivity (affinity, 4.6 nmol/L). Nuclear importation of (111)In-NLS-7G3 in AML-3, -4, or -5 cells was specific and significantly higher than unmodified (111)In-7G3 and was greater in primary AML cells than in normal leukocytes. Rapid elimination of (111)In-NLS-7G3 in NOD/SCID mice prevented imaging of subcutaneous Raji-CD123 tumors. This phenomenon was Fc-dependent and IgG(2a) isotype-specific and was overcome by the preadministration of excess IgG(2a) or using (111)In-NLS-7G3 F(ab')(2) fragments. AML-3 and -5 cells were engrafted into the bone marrow or spleen or at extramedullary sites in NOD/SCID mice. Micro-SPECT/CT with (111)In-NLS-7G3 F(ab')(2) showed splenic involvement, whereas foci of disease were seen in the spine or femur or at extramedullary sites in the brain and lymph nodes using (111)In-NLS-7G3 IgG(2a). The viability of AML-5 cells was reduced by exposure in vitro to (111)In-NLS-7G3; this reduction was associated with an increase in unrepaired DNA double-strand breaks.

Conclusion: (111)In-NLS-7G3 is a promising novel Auger electron-emitting radioimmunotherapeutic agent for AML aimed at the leukemia stem cell population. Micro-SPECT/CT was useful for visualizing the engraftment of leukemia in NOD/SCID mice.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources