Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan 16;19(2):025710.
doi: 10.1088/0957-4484/19/02/025710. Epub 2007 Dec 6.

Mechanical properties of microwave hydrothermally synthesized titanate nanowires

Affiliations

Mechanical properties of microwave hydrothermally synthesized titanate nanowires

M Chang et al. Nanotechnology. .

Abstract

In this investigation titanate nanowires were synthesized by a microwave hydrothermal process and their nanomechanical characterization was carried out by a compression experiment via buckling instability using a nanomanipulator inside a scanning electron microscope. Nanowires of diameters 120-150 nm and length tens of microns can be synthesized by keeping a commercial nanoparticle inside a microwave oven at 350 W and 210 °C for 5 h. The nanowire was clamped between two cantilevered AFM tips attached to two opposing stages of the manipulator for nanomechanical characterization. The elasticity coefficients of the titanate nanowires were measured by applying a continuously increasing load and observing the buckling instability of the nanowires. The buckling behavior of a nanowire was analyzed from the series of SEM images of displacement of the cantilever attached to the nanowire due to application of load. The critical loads for different sized titanate nanowires were determined and their corresponding Young's modulus was computed with the Euler pinned-fixed end model. The Young's modulus of these microwave hydrothermal process synthesized titanate nanowires were determined to be approximately in the range 14-17 GPa. This investigation confirms the capability of the nanomanipulator via the buckling technique as a constructive device for measuring the mechanical properties of nanoscale materials.

PubMed Disclaimer

LinkOut - more resources