Mechanical properties of microwave hydrothermally synthesized titanate nanowires
- PMID: 21817559
- DOI: 10.1088/0957-4484/19/02/025710
Mechanical properties of microwave hydrothermally synthesized titanate nanowires
Abstract
In this investigation titanate nanowires were synthesized by a microwave hydrothermal process and their nanomechanical characterization was carried out by a compression experiment via buckling instability using a nanomanipulator inside a scanning electron microscope. Nanowires of diameters 120-150 nm and length tens of microns can be synthesized by keeping a commercial nanoparticle inside a microwave oven at 350 W and 210 °C for 5 h. The nanowire was clamped between two cantilevered AFM tips attached to two opposing stages of the manipulator for nanomechanical characterization. The elasticity coefficients of the titanate nanowires were measured by applying a continuously increasing load and observing the buckling instability of the nanowires. The buckling behavior of a nanowire was analyzed from the series of SEM images of displacement of the cantilever attached to the nanowire due to application of load. The critical loads for different sized titanate nanowires were determined and their corresponding Young's modulus was computed with the Euler pinned-fixed end model. The Young's modulus of these microwave hydrothermal process synthesized titanate nanowires were determined to be approximately in the range 14-17 GPa. This investigation confirms the capability of the nanomanipulator via the buckling technique as a constructive device for measuring the mechanical properties of nanoscale materials.
LinkOut - more resources
Full Text Sources
Miscellaneous