Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis
- PMID: 21818404
- PMCID: PMC3144950
- DOI: 10.1371/journal.pone.0022887
Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells capable of differentiating into a variety of mature cell types, including osteoblasts, adipocytes and chondrocytes. It has previously been shown that, when expanded in medium supplemented with fibroblast growth factor-2 (FGF-2), hMSCs show enhanced chondrogenesis (CG). Previous work concluded that the enhancement of CG could be attributed to the selection of a cell subpopulation with inherent chondrogenic potential. In this study, we show that FGF-2 pretreatment actually primed hMSCs to undergo enhanced CG by increasing basal Sox9 protein levels. Our results show that Sox9 protein levels were elevated within 30 minutes of exposure to FGF-2 and progressively increased with longer exposures. Further, we show using flow cytometry that FGF-2 increased Sox9 protein levels per cell in proliferating and non-proliferating hMSCs, strongly suggesting that FGF-2 primes hMSCs for subsequent CG by regulating Sox9. Indeed, when hMSCs were exposed to FGF-2 for 2 hours and subsequently differentiated into the chondrogenic lineage using pellet culture, phosphorylated-Sox9 (pSox9) protein levels became elevated and ultimately resulted in an enhancement of CG. However, small interfering RNA (siRNA)-mediated knockdown of Sox9 during hMSC expansion was unable to negate the prochondrogenic effects of FGF-2, suggesting that the FGF-2-mediated enhancement of hMSC CG is only partly regulated through Sox9. Our findings provide new insights into the mechanism by which FGF-2 regulates predifferentiation hMSCs to undergo enhanced CG.
Conflict of interest statement
Figures
References
-
- Peat G, Wood L, Wilkie R, Thomas E, Grp KSS. How reliable is structured clinical history-taking in older adults with knee problems? Inter- and intraobserver variability of the KNE-SCI. Journal of Clinical Epidemiology. 2003;56:1030–1037. - PubMed
-
- Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 1995;16:557–564. - PubMed
-
- Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238:265–272. - PubMed
-
- Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci. 2000;113(Pt 7):1161–1166. - PubMed
-
- Delorme B, Ringe J, Pontikoglou C, Gaillard J, Langonne A, et al. Specific lineage-priming of bone marrow mesenchymal stem cells provides the molecular framework for their plasticity. Stem Cells. 2009;27:1142–1151. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
