Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug;9(4):241-6.

Thiopurine S-methyltransferase polymorphism in Iranian kidney transplant recipients

Affiliations
  • PMID: 21819368
Free article

Thiopurine S-methyltransferase polymorphism in Iranian kidney transplant recipients

Mahdokht Hossein Aghdaie et al. Exp Clin Transplant. 2011 Aug.
Free article

Abstract

Objectives: Thiopurine S-methyltransferase is an enzyme that catalyzes S-methylation of azathioprine as an immunosuppressive drug. Genetic polymorphisms influence thiopurine S-methyltransferase activity. There are 3 variant alleles: thiopurine S-methyltransferase*2, *3A, and *3C are responsible for more than 95% cases of low-enzyme activity.

Materials and methods: We studied these polymorphisms and the occurrence of azathioprine adverse effects in 50 renal transplant recipients undergoing triple immunosuppressive therapy including azathioprine, cyclosporine, and prednisone. Thiopurine S-methyltransferase genetic polymorphism was determined by polymerase chain reaction restriction fragment length polymorphism assay and allele-specific polymerase chain reaction methods. Azathioprine dosage; leukocyte, erythrocyte, and platelet counts; and graft rejection episodes were analyzed during hospitalization.

Results: Two patients (2%) were heterozygous for thiopurine S-methyltransferase*3C, the remaining patients were thiopurine S-methyltransferase wild-type *1/*1 (98%). Thiopurine S-methyltransferase wild-type homozygous and heterozygous patients were administered similar azathioprine dosages at the beginning of treatment (2.42 ± 0.50 and 2.52 ± 0.40 mg/kg/24 h). During subsequent days, mean azathioprine dosage administered to thiopurine S-methyltransferase wild-type homozygous patients was similar to heterozygous patients, but with no statistical difference (P = .28). Three patients had an acute rejection episode during this time. Five patients (10%) had reduced azathioprine dosage owing to adverse effects. Adverse reactions consisted of hematotoxicity (n=2), hepatotoxicity (n=1), and gastrointestinal toxicity (n=2). All recipients were wild-type homozygotes.

Conclusions: The frequency of thiopurine S-methyltransferase gene mutations is low among our patients. The incidence of adverse reactions to azathioprine was also low, even in patients carrying a variant of thiopurine S-methyltransferase. We conclude that determining thiopurine S-methyltransferase genotype is not useful in our population to predict adverse reactions to azathioprine.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources