Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug 6;9(1):5.
doi: 10.1186/1897-4287-9-5.

Drug therapy for hereditary cancers

Affiliations

Drug therapy for hereditary cancers

Evgeny N Imyanitov et al. Hered Cancer Clin Pract. .

Abstract

Tumors arising in patients with hereditary cancer syndromes may have distinct drug sensitivity as compared to their sporadic counterparts. Breast and ovarian neoplasms from BRCA1 or BRCA2 mutation carriers are characterized by deficient homologous recombination (HR) of DNA, that makes them particularly sensitive to platinum compounds or inhibitors of poly (ADP-ribose) polymerase (PARP). Outstandingly durable complete responses to high dose chemotherapy have been observed in several cases of BRCA-related metastatic breast cancer (BC). Multiple lines of evidence indicate that women with BRCA1-related BC may derive less benefit from taxane-based treatment than other categories of BC patients. There is virtually no reports directly assessing drug response in hereditary colorectal cancer (CRC) patients; studies involving non-selected (i.e., both sporadic and hereditary) CRC with high-level microsatellite instability (MSI-H) suggest therapeutic advantage of irinotecan. Celecoxib has been approved for the treatment of familial adenomatous polyposis (FAP). Hereditary medullary thyroid cancers (MTC) have been shown to be highly responsive to a multitargeted tyrosine kinase inhibitor vandetanib, which exerts specific activity towards mutated RET receptor. Given the rapidly improving accessibility of DNA analysis, it is foreseen that the potential predictive value of cancer-associated germ-line mutations will be increasingly considered in the future studies.

PubMed Disclaimer

References

    1. Bermejo-Pérez MJ, Márquez-Calderón S, Llanos-Méndez A. Effectiveness of preventive interventions in BRCA1/2 gene mutation carriers: a systematic review. Int J Cancer. 2007;121:225–231. doi: 10.1002/ijc.22817. - DOI - PubMed
    1. Domchek SM, Friebel TM, Singer CF, Evans DG, Lynch HT, Isaacs C, Garber JE, Neuhausen SL, Matloff E, Eeles R, Pichert G, Van t'veer L, Tung N, Weitzel JN, Couch FJ, Rubinstein WS, Ganz PA, Daly MB, Olopade OI, Tomlinson G, Schildkraut J, Blum JL, Rebbeck TR. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA. 2010;304:967–975. doi: 10.1001/jama.2010.1237. - DOI - PMC - PubMed
    1. Kurian AW. BRCA1 and BRCA2 mutations across race and ethnicity: distribution and clinical implications. Curr Opin Obstet Gynecol. 2010;22:72–78. doi: 10.1097/GCO.0b013e328332dca3. - DOI - PubMed
    1. Fasano J, Muggia F. Breast cancer arising in a BRCA-mutated background: therapeutic implications from an animal model and drug development. Ann Oncol. 2009;20:609–614. doi: 10.1093/annonc/mdn669. - DOI - PubMed
    1. Trainer AH, Lewis CR, Tucker K, Meiser B, Friedlander M, Ward RL. The role of BRCA mutation testing in determining breast cancer therapy. Nat Rev Clin Oncol. 2010;7:708–717. doi: 10.1038/nrclinonc.2010.175. - DOI - PubMed

LinkOut - more resources