Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug;65(8):844-8.
doi: 10.1366/11-06245.

Noninvasive subsurface analysis using multiple miniaturized Raman probes, part I: basic study of thin-layered transparent models of biomedical tissues

Affiliations

Noninvasive subsurface analysis using multiple miniaturized Raman probes, part I: basic study of thin-layered transparent models of biomedical tissues

Yuko S Yamamoto et al. Appl Spectrosc. 2011 Aug.

Abstract

This study describes a basic theory for reconstructing pure Raman signals of materials composing a multilayer sample from Raman spectra obtained using two types of miniaturized Raman probes. An illustrative example is demonstrated using a multilayer system of samples composed of the transparent plastics polymethylmethacrylate (PMMA) and polyethylene (PE) as a model of thin-layered biomedical tissues. When the same region of an object is measured using Raman probes with different focal properties, the Raman spectra provide different depth profile information depending on the level of light penetration. Thus, a detailed comparison of the spectra can provide an interesting opportunity to probe the differences between the layers. A simple analytic form is presented for reconstructing the pure Raman spectra of the embedded layer. The method applies an understanding of the Raman sampling volume in layered transparent materials to the interpretation of Raman spectra experimentally measured by multiple probes. The basic theory described here is necessary for the expansion of the technique to turbid media, such as biological samples, where light-scattering effects must be considered. The potential applications of the proposed method include material and catalyst subsurface probing through different embedded materials, such as assessment of silicon wafers, effective noninvasive screening for catalyst synthesis, and biomedical tissue research.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources