Noninvasive subsurface analysis using multiple miniaturized Raman probes, part I: basic study of thin-layered transparent models of biomedical tissues
- PMID: 21819773
- DOI: 10.1366/11-06245
Noninvasive subsurface analysis using multiple miniaturized Raman probes, part I: basic study of thin-layered transparent models of biomedical tissues
Abstract
This study describes a basic theory for reconstructing pure Raman signals of materials composing a multilayer sample from Raman spectra obtained using two types of miniaturized Raman probes. An illustrative example is demonstrated using a multilayer system of samples composed of the transparent plastics polymethylmethacrylate (PMMA) and polyethylene (PE) as a model of thin-layered biomedical tissues. When the same region of an object is measured using Raman probes with different focal properties, the Raman spectra provide different depth profile information depending on the level of light penetration. Thus, a detailed comparison of the spectra can provide an interesting opportunity to probe the differences between the layers. A simple analytic form is presented for reconstructing the pure Raman spectra of the embedded layer. The method applies an understanding of the Raman sampling volume in layered transparent materials to the interpretation of Raman spectra experimentally measured by multiple probes. The basic theory described here is necessary for the expansion of the technique to turbid media, such as biological samples, where light-scattering effects must be considered. The potential applications of the proposed method include material and catalyst subsurface probing through different embedded materials, such as assessment of silicon wafers, effective noninvasive screening for catalyst synthesis, and biomedical tissue research.
Similar articles
-
Subsurface sensing of biomedical tissues using a miniaturized Raman probe: study of thin-layered model samples.Anal Chim Acta. 2008 Jun 30;619(1):8-13. doi: 10.1016/j.aca.2008.02.027. Epub 2008 Feb 20. Anal Chim Acta. 2008. PMID: 18539166
-
Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy.Appl Spectrosc. 2005 Apr;59(4):393-400. doi: 10.1366/0003702053641450. Appl Spectrosc. 2005. PMID: 15901323
-
Depth profiling in diffusely scattering media using Raman spectroscopy and picosecond Kerr gating.Appl Spectrosc. 2005 Feb;59(2):200-5. doi: 10.1366/0003702053085115. Appl Spectrosc. 2005. PMID: 15720761
-
Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials.Analyst. 2016 Feb 7;141(3):731-9. doi: 10.1039/c5an02129d. Epub 2015 Dec 8. Analyst. 2016. PMID: 26646435 Review.
-
Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications.Chem Soc Rev. 2008 May;37(5):912-20. doi: 10.1039/b708839f. Epub 2008 Mar 26. Chem Soc Rev. 2008. PMID: 18443676 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources