Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct;16(9):1037-46.
doi: 10.1177/1087057111414899. Epub 2011 Aug 5.

In silico-based structural analysis of arylthiophene derivatives for FTase inhibitory activity, hERG, and other toxic effects

Affiliations

In silico-based structural analysis of arylthiophene derivatives for FTase inhibitory activity, hERG, and other toxic effects

N S Hari Narayana Moorthy et al. J Biomol Screen. 2011 Oct.

Abstract

In the present investigation, the authors have performed an in silico-based analysis on a series of arylthiophene derivatives for the determination of their structural features responsible for farnesyltransferase (FTase) inhibitory activity, hERG blocking activity, and toxicity by quantitative structure-activity relationship and pharmacophore analysis techniques. The statistically significant models derived through multiple linear regression analysis were validated by different validation methods. The applicability of the descriptors contributed in the selected models show that the polar and polarizable properties on the van der Waals (vdW) surface area of the molecules are important for the FTase inhibitory and hERG blocking activities, while being detrimental for the toxicity of the molecules. It is interesting to note that the topological properties, molecular flexibility, and connectivity of the molecules are positively correlated to all the activities (FTase inhibition, hERG blocking, and toxicity). This implies that the flexibility of the molecules is the common feature for interaction in all targets, whereas the presence of polar groups on the molecular surface (vdW) is a determinant for the favorable (FTase inhibition) or unwanted effect (hERG blocking and toxicity) of the molecules. The pharmacophore analysis of the molecules demonstrated that the aromatic/hydrophobicity and polarizability features are important pharmacophore contours favorable for these activities.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources