Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011;117(1):6-11.
doi: 10.1254/jphs.11r06cp. Epub 2011 Aug 6.

Pharmacological study on Alzheimer's drugs targeting calcium/calmodulin-dependent protein kinase II

Affiliations
Free article
Review

Pharmacological study on Alzheimer's drugs targeting calcium/calmodulin-dependent protein kinase II

Shigeki Moriguchi. J Pharmacol Sci. 2011.
Free article

Abstract

In the brain of Alzheimer's disease patients, down-regulation of both cholinergic and glutamatergic systems have been found and is thought to play an important role in impairment of cognition, learning, and memory. Nefiracetam is a pyrrolidine-related nootropic drug exhibiting various pharmacological actions such as a cognitive-enhancing effect. The present study was undertaken to elucidate mechanisms underlying the action of nefiracetam on glutamatergic receptors and intracellular protein kinases. N-Methyl-D-aspartate (NMDA)-evoked currents were recorded from rat cortical neurons in long-term cultured primary neurons using the whole-cell patch-clamp technique. NMDA-evoked currents were greatly and reversibly potentiated by bath application of nefiracetam, resulting in a bell-shaped dose-response curve. The maximum potentiation of 170% relative to the control was produced at 10 nM. Treatment with an inhibitor of the glycine binding site of the NMDA receptor, 7-chlorokynurenic acid, at 1 µM prevented augmentation of NMDA-evoked currents by nefiracetam. In rat hippocampal CA1 slices, field excitatory postsynaptic potentials were recorded by stimulation of Schaffer collateral/commissural pathways. Nefiracetam treatment significantly enhanced long-term potentiation (LTP) with the same bell-shaped dose-response curve. Furthermore, nefiracetam-induced LTP enhancement was closely associated with calcium/calmodulin-dependent protein kinase II (CaMKII) activation with concomitant increase in phosphorylation of AMPA-type glutamate receptor subunit 1 (GluA1) (Ser-831) as a postsynaptic CaMKII substrate. In conclusion, nefiracetam enhances NMDA-receptor function through stimulation of its glycine binding site and nefiracetam-induced CaMKII activation likely contributes to improvement of cognition, learning, and memory.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances