Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Oct:13 Suppl 1:13-20.
doi: 10.1111/j.1463-1326.2011.01440.x.

Transcriptional regulation of α-cell differentiation

Affiliations
Review

Transcriptional regulation of α-cell differentiation

N C Bramswig et al. Diabetes Obes Metab. 2011 Oct.

Abstract

The development of the endocrine pancreas and the differentiation of its five cell types, α, β, δ, ε and pancreatic polypeptide (PP) cells, are a highly complex and tightly regulated process. Proper differentiation and function of α- and β-cells are critical for blood glucose homeostasis. These processes are governed by multiple transcription factors and other signalling systems, and its dysregulation results in diabetes. The differentiation of α-cells and the maintenance of α-cell function can be influenced at several stages during development and in the maturing islet. Many transcription factors, such as neurogenin 3 (Ngn3), pancreatic duodenal homeobox 1 (Pdx1) and regulatory factor x6 (Rfx6), play a crucial role in the determination of the endocrine cell fate, while other transcription factors, such as aristaless-related homeobox (Arx) and forkhead box A2 (Foxa2), are implicated in the initial or terminal differentiation of α-cells. In vivo and in vitro studies have shown that preproglucagon transcription, and therefore the maintenance of α-cell function, is regulated by several factors, including forkhead box A1 (Foxa1), paired box 6 (Pax6), brain4 (Brn4) and islet-1 (Isl-1). Detailed information about the regulation of normal and abnormal α-cell differentiation gives insight into the pathogenesis of diabetes, identifies further targets for diabetes treatment and provides clues for the reprogramming of α- to β-cells for replacement therapy.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources