Structural elements of the C-terminal domain of subunit E (E₁₃₃₋₂₂₂) from the Saccharomyces cerevisiae V₁V₀ ATPase determined by solution NMR spectroscopy
- PMID: 21826517
- DOI: 10.1007/s10863-011-9379-y
Structural elements of the C-terminal domain of subunit E (E₁₃₃₋₂₂₂) from the Saccharomyces cerevisiae V₁V₀ ATPase determined by solution NMR spectroscopy
Abstract
Subunit E of the vacuolar ATPase (V-ATPase) contains an N-terminal extended α helix (Rishikesan et al. J Bioenerg Biomembr 43:187-193, 2011) and a globular C-terminal part that is predicted to consist of a mixture of α-helices and β-sheets (Grüber et al. Biochem Biophys Res Comm 298:383-391, 2002). Here we describe the production, purification and 2D structure of the C-terminal segment E₁₃₃₋₂₂₂ of subunit E from Saccharamyces cerevisiae V-ATPase in solution based on the secondary structure calculation from NMR spectroscopy studies. E₁₃₃₋₂₂₂ consists of four β-strands, formed by the amino acids from K136-V139, E170-V173, G186-V189, D195-E198 and two α-helices, composed of the residues from R144-A164 and T202-I218. The sheets and helices are arranged as β1:α1:β2:β3:β4:α2, which are connected by flexible loop regions. These new structural details of subunit E are discussed in the light of the structural arrangements of this subunit inside the V₁- and V₁V₀ ATPase.
Similar articles
-
Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae.J Biol Chem. 2013 Apr 26;288(17):11930-9. doi: 10.1074/jbc.M113.461533. Epub 2013 Mar 8. J Biol Chem. 2013. PMID: 23476018 Free PMC article.
-
Crystal structure of subunits D and F in complex gives insight into energy transmission of the eukaryotic V-ATPase from Saccharomyces cerevisiae.J Biol Chem. 2015 Feb 6;290(6):3183-96. doi: 10.1074/jbc.M114.622688. Epub 2014 Dec 12. J Biol Chem. 2015. PMID: 25505269 Free PMC article.
-
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.J Bioenerg Biomembr. 2011 Apr;43(2):187-93. doi: 10.1007/s10863-011-9342-y. Epub 2011 Mar 12. J Bioenerg Biomembr. 2011. PMID: 21399923
-
Rotational catalysis in proton pumping ATPases: from E. coli F-ATPase to mammalian V-ATPase.Biochim Biophys Acta. 2012 Oct;1817(10):1711-21. doi: 10.1016/j.bbabio.2012.03.015. Epub 2012 Mar 20. Biochim Biophys Acta. 2012. PMID: 22459334 Review.
-
Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals.Eukaryot Cell. 2014 Jun;13(6):706-14. doi: 10.1128/EC.00050-14. Epub 2014 Apr 4. Eukaryot Cell. 2014. PMID: 24706019 Free PMC article. Review.
Cited by
-
Glu-44 in the amino-terminal α-helix of yeast vacuolar ATPase E subunit (Vma4p) has a role for VoV1 assembly.J Biol Chem. 2013 Dec 20;288(51):36236-43. doi: 10.1074/jbc.M113.506741. Epub 2013 Nov 6. J Biol Chem. 2013. PMID: 24196958 Free PMC article.
-
Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae.J Biol Chem. 2013 Apr 26;288(17):11930-9. doi: 10.1074/jbc.M113.461533. Epub 2013 Mar 8. J Biol Chem. 2013. PMID: 23476018 Free PMC article.
-
Crystal structure of subunits D and F in complex gives insight into energy transmission of the eukaryotic V-ATPase from Saccharomyces cerevisiae.J Biol Chem. 2015 Feb 6;290(6):3183-96. doi: 10.1074/jbc.M114.622688. Epub 2014 Dec 12. J Biol Chem. 2015. PMID: 25505269 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases