Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep;63(9):1119-35.
doi: 10.1111/j.2042-7158.2011.01279.x. Epub 2011 Apr 4.

Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes

Affiliations

Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes

Thorsteinn Loftsson et al. J Pharm Pharmacol. 2011 Sep.

Abstract

Objectives: Cyclodextrins are useful solubilizing excipients that have gained currency in the formulator's armamentarium based on their ability to temporarily camouflage undesirable physicochemical properties. In this context cyclodextrins can increase oral bioavailability, stabilize compounds to chemical and enzymatic degradation and can affect permeability through biological membranes under certain circumstances. This latter property is examined herein as a function of the published literature as well as work completed in our laboratories.

Key findings: Cyclodextrins can increase the uptake of drugs through biological barriers if the limiting barrier component is the unstirred water layer (UWL) that exists between the membrane and bulk water. This means that cyclodextrins are most useful when they interact with lipophiles in systems where such an UWL is present and contributes significantly to the barrier properties of the membrane. Furthermore, these principles are used to direct the optimal formulation of drugs in cyclodextrins. A second related critical success factor in the formulation of cyclodextrin-based drug product is an understanding of the kinetics and thermodynamics of complexation and the need to optimize the cyclodextrin amount and drug-to-cyclodextrin ratios. Drug formulations, especially those targeting compartments associated with limited dissolution (i.e. the eye, subcutaneous space, etc.), should be carefully designed such that the thermodynamic activity of the drug in the formulation is optimal meaning that there is sufficient cyclodextrin to solubilize the drug but not more than that. Increasing the cyclodextrin concentration decreases the formulation 'push' and may reduce the bioavailability of the system.

Conclusions: A mechanism-based understanding of cyclodextrin complexation is essential for the appropriate formulation of contemporary drug candidates.

PubMed Disclaimer