Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul;7(7):e1002198.
doi: 10.1371/journal.pgen.1002198. Epub 2011 Jul 28.

Fine mapping of five loci associated with low-density lipoprotein cholesterol detects variants that double the explained heritability

Affiliations

Fine mapping of five loci associated with low-density lipoprotein cholesterol detects variants that double the explained heritability

Serena Sanna et al. PLoS Genet. 2011 Jul.

Abstract

Complex trait genome-wide association studies (GWAS) provide an efficient strategy for evaluating large numbers of common variants in large numbers of individuals and for identifying trait-associated variants. Nevertheless, GWAS often leave much of the trait heritability unexplained. We hypothesized that some of this unexplained heritability might be due to common and rare variants that reside in GWAS identified loci but lack appropriate proxies in modern genotyping arrays. To assess this hypothesis, we re-examined 7 genes (APOE, APOC1, APOC2, SORT1, LDLR, APOB, and PCSK9) in 5 loci associated with low-density lipoprotein cholesterol (LDL-C) in multiple GWAS. For each gene, we first catalogued genetic variation by re-sequencing 256 Sardinian individuals with extreme LDL-C values. Next, we genotyped variants identified by us and by the 1000 Genomes Project (totaling 3,277 SNPs) in 5,524 volunteers. We found that in one locus (PCSK9) the GWAS signal could be explained by a previously described low-frequency variant and that in three loci (PCSK9, APOE, and LDLR) there were additional variants independently associated with LDL-C, including a novel and rare LDLR variant that seems specific to Sardinians. Overall, this more detailed assessment of SNP variation in these loci increased estimates of the heritability of LDL-C accounted for by these genes from 3.1% to 6.5%. All association signals and the heritability estimates were successfully confirmed in a sample of ∼10,000 Finnish and Norwegian individuals. Our results thus suggest that focusing on variants accessible via GWAS can lead to clear underestimates of the trait heritability explained by a set of loci. Further, our results suggest that, as prelude to large-scale sequencing efforts, targeted re-sequencing efforts paired with large-scale genotyping will increase estimates of complex trait heritability explained by known loci.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Regional Association plots.
Association results around LDLR, PCSK9 cluster and APOE. In each panel, the box at left (A, C and E) shows the association results in the main analysis; and at right (B, D and F) the results after conditioning for the strongest associated variant, highlighted with a purple dot in both plots, and its name written at the top. Arrows highlight independent signals and the most associated SNP detected in the previous GWAS . Each SNP is also colored according to its LD (r2) in Sardinians with the top variant, with symbols that reflect genomic annotation as indicated in the legend. The rugs above indicate the position of the SNPs that were analyzed by direct typing (MetaboChip), or imputed by using haplotypes from sequenced samples (Affy+Sanger) or 1000 Genomes haplotypes (1000G). Plots were drawn using the LocusZoom standalone version . Genomic coordinates are given according to build 36 (hg18).

References

    1. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–713. - PMC - PubMed
    1. Chen W, Stambolian D, Edwards AO, Branham KE, Othman M, et al. Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci U S A. 2010;07(16):7401–6. - PMC - PubMed
    1. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41(6):703–7. - PMC - PubMed
    1. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53. - PMC - PubMed
    1. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40(2):161–169. - PMC - PubMed

Publication types

Substances