An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster
- PMID: 21829382
- PMCID: PMC3145626
- DOI: 10.1371/journal.pgen.1002205
An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster
Abstract
Type VI secretion systems (T6SS) are macromolecular machines of the cell envelope of Gram-negative bacteria responsible for bacterial killing and/or virulence towards different host cells. Here, we characterized the regulatory mechanism underlying expression of the enteroagregative Escherichia coli sci1 T6SS gene cluster. We identified Fur as the main regulator of the sci1 cluster. A detailed analysis of the promoter region showed the presence of three GATC motifs, which are target of the DNA adenine methylase Dam. Using a combination of reporter fusion, gel shift, and in vivo and in vitro Dam methylation assays, we dissected the regulatory role of Fur and Dam-dependent methylation. We showed that the sci1 gene cluster expression is under the control of an epigenetic switch depending on methylation: fur binding prevents methylation of a GATC motif, whereas methylation at this specific site decreases the affinity of Fur for its binding box. A model is proposed in which the sci1 promoter is regulated by iron availability, adenine methylation, and DNA replication.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
References
-
- Bingle LE, Bailey CM, Pallen MJ. Type VI secretion: a beginner's guide. Curr Opin Microbiol. 2008;11:3–8. - PubMed
-
- Filloux A, Hachani A, Bleves S. The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology. 2008;154:1570–83. - PubMed
-
- Aschtgen MS, Gavioli M, Dessen A, Lloubès R, Cascales E. The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol. 2010;75:886–99. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
