Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May;10(5):2269-84.
doi: 10.1128/mcb.10.5.2269-2284.1990.

Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae

Affiliations

Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae

D Herrick et al. Mol Cell Biol. 1990 May.

Abstract

We developed a procedure to measure mRNA decay rates in the yeast Saccharomyces cerevisiae and applied it to the determination of half-lives for 20 mRNAs encoded by well-characterized genes. The procedure utilizes Northern (RNA) or dot blotting to quantitate the levels of individual mRNAs after thermal inactivation of RNA polymerase II in an rpb1-1 temperature-sensitive mutant. We compared the results of this procedure with results obtained by two other procedures (approach to steady-state labeling and inhibition of transcription with Thiolutin) and also evaluated whether heat shock alter mRNA decay rates. We found that there are no significant differences in the mRNA decay rates measured in heat-shocked and non-heat-shocked cells and that, for most mRNAs, different procedures yield comparable relative decay rates. Of the 20 mRNAs studied, 11, including those encoded by HIS3, STE2, STE3, and MAT alpha 1, were unstable (t1/2 less than 7 min) and 4, including those encoded by ACT1 and PGK1, were stable (t1/2 greater than 25 min). We have begun to assess the basis and significance of such differences in the decay rates of these two classes of mRNA. Our results indicate that (i) stable and unstable mRNAs do not differ significantly in their poly(A) metabolism; (ii) deadenylation does not destabilize stable mRNAs; (iii) there is no correlation between mRNA decay rate and mRNA size; (iv) the degradation of both stable and unstable mRNAs depends on concomitant translational elongation; and (v) the percentage of rare codons present in most unstable mRNAs is significantly higher than in stable mRNAs.

PubMed Disclaimer

References

    1. Cell. 1981 Nov;27(1 Pt 2):15-23 - PubMed
    1. Mol Gen Genet. 1979 Feb 26;170(2):129-35 - PubMed
    1. Cell. 1981 May;24(2):377-84 - PubMed
    1. J Mol Biol. 1985 Jan 20;181(2):231-9 - PubMed
    1. Nucleic Acids Res. 1983 May 25;11(10):3123-35 - PubMed

Publication types

LinkOut - more resources