Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria
- PMID: 21832085
- PMCID: PMC3186357
- DOI: 10.1074/jbc.M111.248138
Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria
Abstract
The bifidogenic effect of human milk oligosaccharides (HMOs) has long been known, yet the precise mechanism underlying it remains unresolved. Recent studies show that some species/subspecies of Bifidobacterium are equipped with genetic and enzymatic sets dedicated to the utilization of HMOs, and consequently they can grow on HMOs; however, the ability to metabolize HMOs has not been directly linked to the actual metabolic behavior of the bacteria. In this report, we clarify the fate of each HMO during cultivation of infant gut-associated bifidobacteria. Bifidobacterium bifidum JCM1254, Bifidobacterium longum subsp. infantis JCM1222, Bifidobacterium longum subsp. longum JCM1217, and Bifidobacterium breve JCM1192 were selected for this purpose and were grown on HMO media containing a main neutral oligosaccharide fraction. The mono- and oligosaccharides in the spent media were labeled with 2-anthranilic acid, and their concentrations were determined at various incubation times using normal phase high performance liquid chromatography. The results reflect the metabolic abilities of the respective bifidobacteria. B. bifidum used secretory glycosidases to degrade HMOs, whereas B. longum subsp. infantis assimilated all HMOs by incorporating them in their intact forms. B. longum subsp. longum and B. breve consumed lacto-N-tetraose only. Interestingly, B. bifidum left degraded HMO metabolites outside of the cell even when the cells initiate vegetative growth, which indicates that the different species/subspecies can share the produced sugars. The predominance of type 1 chains in HMOs and the preferential use of type 1 HMO by infant gut-associated bifidobacteria suggest the coevolution of the bacteria with humans.
Figures






Similar articles
-
Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum.Sci Rep. 2018 Sep 18;8(1):13958. doi: 10.1038/s41598-018-32080-3. Sci Rep. 2018. PMID: 30228375 Free PMC article.
-
Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve.Appl Environ Microbiol. 2013 Oct;79(19):6040-9. doi: 10.1128/AEM.01843-13. Epub 2013 Jul 26. Appl Environ Microbiol. 2013. PMID: 23892749 Free PMC article.
-
Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR.mSystems. 2022 Oct 26;7(5):e0034322. doi: 10.1128/msystems.00343-22. Epub 2022 Sep 12. mSystems. 2022. PMID: 36094076 Free PMC article.
-
Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides.Trends Microbiol. 2010 Jul;18(7):298-307. doi: 10.1016/j.tim.2010.03.008. Epub 2010 Apr 19. Trends Microbiol. 2010. PMID: 20409714 Free PMC article. Review.
-
Human milk oligosaccharides combine with Bifidobacterium longum to form the "golden shield" of the infant intestine: metabolic strategies, health effects, and mechanisms of action.Gut Microbes. 2024 Jan-Dec;16(1):2430418. doi: 10.1080/19490976.2024.2430418. Epub 2024 Nov 21. Gut Microbes. 2024. PMID: 39572856 Free PMC article. Review.
Cited by
-
Guide RNA structure design enables combinatorial CRISPRa programs for biosynthetic profiling.Nat Commun. 2024 Jul 27;15(1):6341. doi: 10.1038/s41467-024-50528-1. Nat Commun. 2024. PMID: 39068154 Free PMC article.
-
The Infant-Derived Bifidobacterium bifidum Strain CNCM I-4319 Strengthens Gut Functionality.Microorganisms. 2020 Aug 28;8(9):1313. doi: 10.3390/microorganisms8091313. Microorganisms. 2020. PMID: 32872165 Free PMC article.
-
Human Breast Milk: Exploring the Linking Ring Among Emerging Components.Front Pediatr. 2018 Aug 7;6:215. doi: 10.3389/fped.2018.00215. eCollection 2018. Front Pediatr. 2018. PMID: 30131948 Free PMC article. Review.
-
Human milk oligosaccharide-sharing by a consortium of infant derived Bifidobacterium species.Sci Rep. 2022 Mar 9;12(1):4143. doi: 10.1038/s41598-022-07904-y. Sci Rep. 2022. PMID: 35264656 Free PMC article.
-
Term Infant Formulas Influencing Gut Microbiota: An Overview.Nutrients. 2021 Nov 23;13(12):4200. doi: 10.3390/nu13124200. Nutrients. 2021. PMID: 34959752 Free PMC article. Review.
References
-
- Newburg D. S., Neubauer S. H. (1995) in Handbook of Milk Composition (Jensen R G. ed) pp. 273–349, Academic Press, San Diego
-
- Ninonuevo M. R., Park Y., Yin H., Zhang J., Ward R. E., Clowers B. H., German J. B., Freeman S. L., Killeen K., Grimm R., Lebrilla C. B. (2006) J. Agric. Food Chem. 54, 7471–7480 - PubMed
-
- Urashima T., Kitaoka M., Terabayashi T., Fukuda K., Ohnishi M., Kobata A. (2011) in Oligosaccharides: Sources, Properties, and Applications (Gordon N. G. ed) pp. 1–58, Nova Science Publishers, New York
-
- Amano J., Osanai M., Orita T., Sugahara D., Osumi K. (2009) Glycobiology 19, 601–614 - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials