Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep 17;19(37):375104.
doi: 10.1088/0957-4484/19/37/375104. Epub 2008 Aug 1.

A facile nanoaggregation strategy for oral delivery of hydrophobic drugs by utilizing acid-base neutralization reactions

Affiliations

A facile nanoaggregation strategy for oral delivery of hydrophobic drugs by utilizing acid-base neutralization reactions

Huabing Chen et al. Nanotechnology. .

Abstract

Nanonization strategies have been used to enhance the oral availability of numerous drugs that are poorly soluble in water. Exploring a facile nanonization strategy with highly practical potential is an attractive focus. Here, we report a novel facile nanoaggregation strategy for constructing drug nanoparticles of poorly soluble drugs with pH-dependent solubility by utilizing acid-base neutralization in aqueous solution, thus facilitating the exploration of nanonization in oral delivery for general applicability. We demonstrate that hydrophobic itraconazole dissolved in acid solution formed a growing core and aggregated into nanoparticles in the presence of stabilizers. The nanoparticles, with an average diameter of 279.3 nm and polydispersity index of 0.116, showed a higher dissolution rate when compared with the marketed formulation; the average dissolution was about 91.3%. The in vivo pharmacokinetic studies revealed that the nanoparticles had a rapid absorption and enhanced oral availability. The diet state also showed insignificant impact on the absorption of itraconazole from nanoparticles. This nanoaggregation strategy is a promising nanonization method with a facile process and avoidance of toxic organic solvents for oral delivery of poorly soluble drugs with pH-dependent solubility and reveals a highly practical potential in the pharmaceutical and chemical industries.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources