Discriminant analysis for repeated measures data: a review
- PMID: 21833215
- PMCID: PMC3153764
- DOI: 10.3389/fpsyg.2010.00146
Discriminant analysis for repeated measures data: a review
Abstract
Discriminant analysis (DA) encompasses procedures for classifying observations into groups (i.e., predictive discriminative analysis) and describing the relative importance of variables for distinguishing amongst groups (i.e., descriptive discriminative analysis). In recent years, a number of developments have occurred in DA procedures for the analysis of data from repeated measures designs. Specifically, DA procedures have been developed for repeated measures data characterized by missing observations and/or unbalanced measurement occasions, as well as high-dimensional data in which measurements are collected repeatedly on two or more variables. This paper reviews the literature on DA procedures for univariate and multivariate repeated measures data, focusing on covariance pattern and linear mixed-effects models. A numeric example illustrates their implementation using SAS software.
Keywords: classification; longitudinal; missing data; multivariate; repeated measures.
Similar articles
-
Repeated measures discriminant analysis using multivariate generalized estimation equations.Stat Methods Med Res. 2022 Apr;31(4):646-657. doi: 10.1177/09622802211032705. Epub 2021 Dec 13. Stat Methods Med Res. 2022. PMID: 34898331 Free PMC article.
-
Linear discriminant models for unbalanced longitudinal data.Stat Med. 2000 Aug 15;19(15):1969-81. doi: 10.1002/1097-0258(20000815)19:15<1969::aid-sim515>3.0.co;2-y. Stat Med. 2000. PMID: 10900446
-
A SAS/IML program for implementing the modified Brown-Forsythe procedure in repeated measures designs.Comput Methods Programs Biomed. 2006 Sep;83(3):169-77. doi: 10.1016/j.cmpb.2006.06.006. Epub 2006 Aug 23. Comput Methods Programs Biomed. 2006. PMID: 16934362
-
Modelling covariance structure in the analysis of repeated measures data.Stat Med. 2000 Jul 15;19(13):1793-819. doi: 10.1002/1097-0258(20000715)19:13<1793::aid-sim482>3.0.co;2-q. Stat Med. 2000. PMID: 10861779 Review.
-
Statistical analysis of repeated measures data using SAS procedures.J Anim Sci. 1998 Apr;76(4):1216-31. doi: 10.2527/1998.7641216x. J Anim Sci. 1998. PMID: 9581947 Review.
Cited by
-
Feature selection for high-dimensional temporal data.BMC Bioinformatics. 2018 Jan 23;19(1):17. doi: 10.1186/s12859-018-2023-7. BMC Bioinformatics. 2018. PMID: 29357817 Free PMC article.
-
Impact of Climate on the Growth and Yield of the Main Tree Species from Romania Using Dendrochronological Data.Plants (Basel). 2025 Apr 18;14(8):1234. doi: 10.3390/plants14081234. Plants (Basel). 2025. PMID: 40284122 Free PMC article.
-
Depression and suicidal behavior in adolescents: a multi-informant and multi-methods approach to diagnostic classification.Front Psychol. 2014 Jul 17;5:766. doi: 10.3389/fpsyg.2014.00766. eCollection 2014. Front Psychol. 2014. PMID: 25101031 Free PMC article.
-
Dynamic classification using credible intervals in longitudinal discriminant analysis.Stat Med. 2017 Oct 30;36(24):3858-3874. doi: 10.1002/sim.7397. Epub 2017 Aug 1. Stat Med. 2017. PMID: 28762546 Free PMC article.
-
Dynamic longitudinal discriminant analysis using multiple longitudinal markers of different types.Stat Methods Med Res. 2018 Jul;27(7):2060-2080. doi: 10.1177/0962280216674496. Epub 2016 Oct 26. Stat Methods Med Res. 2018. PMID: 27789653 Free PMC article.
References
-
- Albert J. M., Kshirsagar A. M. (1993). The reduced-rank growth curve model for discriminant analysis of longitudinal data. Aust. J. Stat. 35, 345–35710.1111/j.1467-842X.1993.tb01342.x - DOI
-
- Azen S. P., Afifi A. A. (1972). Two models of assessing prognosis on the basis of successive observations. Math. Biosci. 14, 169–17610.1016/0025-5564(72)90016-8 - DOI
-
- Bagui S. C., Mehra K. L. (1999). Classification of multiple observations using multi-stage nearest rank neighbor rule. J. Stat. Plan. Inference 76, 163–18310.1016/S0378-3758(98)00137-2 - DOI
LinkOut - more resources
Full Text Sources