Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec;14(4):467-79.
doi: 10.1007/s10456-011-9230-4. Epub 2011 Aug 11.

Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer

Affiliations

Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer

M Ferrando et al. Angiogenesis. 2011 Dec.

Abstract

Prostate cancer (PCa) is the second leading cause of cancer-associated death in men. Once a tumor is established it may attain further characteristics via mutations or hypoxia, which stimulate new blood vessels. Angiogenesis is a hallmark in the pathogenesis of cancer and inflammatory diseases that may predispose to cancer. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage and was previously reported to play a key role in prostate carcinogenesis. To gain insight into the anti-tumoral properties of HO-1, we investigated its capability to modulate PCa associated-angiogenesis. In the present study, we identified in PC3 cells a set of inflammatory and pro-angiogenic genes down-regulated in response to HO-1 overexpression, in particular VEGFA, VEGFC, HIF1α and α5β1 integrin. Our results indicated that HO-1 counteracts oxidative imbalance reducing ROS levels. An in vivo angiogenic assay showed that intradermal inoculation of PC3 cells stable transfected with HO-1 (PC3HO-1) generated tumours less vascularised than controls, with decreased microvessel density and reduced CD34 and MMP9 positive staining. Interestingly, longer term grown PC3HO-1 xenografts displayed reduced neovascularization with the subsequent down-regulation of VEGFR2 expression. Additionally, HO-1 repressed nuclear factor κB (NF-κB)-mediated transcription from an NF-κB responsive luciferase reporter construct, which strongly suggests that HO-1 may regulate angiogenesis through this pathway. Taken together, these data supports a key role of HO-1 as a modulator of the angiogenic switch in prostate carcinogenesis ascertaining it as a logical target for intervention therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources