Enzymatic systems with homology to nitrogenase
- PMID: 21833861
- DOI: 10.1007/978-1-61779-194-9_5
Enzymatic systems with homology to nitrogenase
Abstract
Nitrogenase-like dark operative protochlorophyllide oxidoreductase (DPOR) is involved in the two-electron reduction of protochlorophyllide to form chlorophyllide during chlorophyll biosynthesis. Formation of bacteriochlorophyll additionally requires a structurally related enzyme system which is termed chlorophyllide oxidoreductase (COR). During DPOR catalysis, the homodimeric subunit ChlL(2) transfers electrons to the corresponding heterotetrameric catalytic subunit (ChlN/ChlB)(2). Analogously, subunit BchX(2) of the COR enzymes delivers electrons to subunit (BchY/BchZ)(2). The ChlL(2) protein is a dynamic switch protein triggering the ATP-dependent transfer of electrons via a [4Fe-4S] cluster onto a second [4Fe-4S] cluster located on subunit (ChlN/ChlB)(2). This initial electron transfer step of DPOR catalysis clearly resembles nitrogenase catalysis. However, the subsequent substrate reduction process was proposed to be unrelated since no molybdenum-containing cofactor or a P-cluster equivalent is employed. To investigate the transient interaction of both subcomplexes ChlL(2) and (ChlN/ChlB)(2) and the resulting electron transfer processes, the ternary DPOR enzyme holocomplex was trapped as an octameric (ChlN/ChlB)(2)(ChlL(2))(2) complex after incubation with non-hydrolyzable ATP analogs. Electron paramagnetic resonance spectroscopic experiments of various DPOR complexes in combination with circular dichroism spectroscopic experiments of the ChlL(2) protein revealed a detailed redox catalytic cycle for nucleotide-dependent DPOR catalysis.
Similar articles
-
Methods for nitrogenase-like dark operative protochlorophyllide oxidoreductase.Methods Mol Biol. 2011;766:129-43. doi: 10.1007/978-1-61779-194-9_9. Methods Mol Biol. 2011. PMID: 21833865
-
Biosynthesis of (bacterio)chlorophylls: ATP-dependent transient subunit interaction and electron transfer of dark operative protochlorophyllide oxidoreductase.J Biol Chem. 2010 Mar 12;285(11):8268-77. doi: 10.1074/jbc.M109.087874. Epub 2010 Jan 14. J Biol Chem. 2010. PMID: 20075073 Free PMC article.
-
Crystal structure of the nitrogenase-like dark operative protochlorophyllide oxidoreductase catalytic complex (ChlN/ChlB)2.J Biol Chem. 2010 Aug 27;285(35):27336-27345. doi: 10.1074/jbc.M110.126698. Epub 2010 Jun 17. J Biol Chem. 2010. PMID: 20558746 Free PMC article.
-
Reduction of Chemically Stable Multibonds: Nitrogenase-Like Biosynthesis of Tetrapyrroles.Adv Exp Med Biol. 2017;925:147-161. doi: 10.1007/5584_2016_175. Adv Exp Med Biol. 2017. PMID: 27957709 Review.
-
Evolution of light-independent protochlorophyllide oxidoreductase.Protoplasma. 2019 Mar;256(2):293-312. doi: 10.1007/s00709-018-1317-y. Epub 2018 Oct 6. Protoplasma. 2019. PMID: 30291443 Review.
Cited by
-
The Chloroplast of Chlamydomonas reinhardtii as a Testbed for Engineering Nitrogen Fixation into Plants.Int J Mol Sci. 2021 Aug 16;22(16):8806. doi: 10.3390/ijms22168806. Int J Mol Sci. 2021. PMID: 34445505 Free PMC article. Review.
-
Nitrogenase and homologs.J Biol Inorg Chem. 2015 Mar;20(2):435-45. doi: 10.1007/s00775-014-1225-3. Epub 2014 Dec 10. J Biol Inorg Chem. 2015. PMID: 25491285 Free PMC article. Review.
-
Reconstruction of Nitrogenase Predecessors Suggests Origin from Maturase-Like Proteins.Genome Biol Evol. 2022 Mar 2;14(3):evac031. doi: 10.1093/gbe/evac031. Genome Biol Evol. 2022. PMID: 35179578 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources