Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011:766:67-77.
doi: 10.1007/978-1-61779-194-9_5.

Enzymatic systems with homology to nitrogenase

Affiliations

Enzymatic systems with homology to nitrogenase

Jürgen Moser et al. Methods Mol Biol. 2011.

Abstract

Nitrogenase-like dark operative protochlorophyllide oxidoreductase (DPOR) is involved in the two-electron reduction of protochlorophyllide to form chlorophyllide during chlorophyll biosynthesis. Formation of bacteriochlorophyll additionally requires a structurally related enzyme system which is termed chlorophyllide oxidoreductase (COR). During DPOR catalysis, the homodimeric subunit ChlL(2) transfers electrons to the corresponding heterotetrameric catalytic subunit (ChlN/ChlB)(2). Analogously, subunit BchX(2) of the COR enzymes delivers electrons to subunit (BchY/BchZ)(2). The ChlL(2) protein is a dynamic switch protein triggering the ATP-dependent transfer of electrons via a [4Fe-4S] cluster onto a second [4Fe-4S] cluster located on subunit (ChlN/ChlB)(2). This initial electron transfer step of DPOR catalysis clearly resembles nitrogenase catalysis. However, the subsequent substrate reduction process was proposed to be unrelated since no molybdenum-containing cofactor or a P-cluster equivalent is employed. To investigate the transient interaction of both subcomplexes ChlL(2) and (ChlN/ChlB)(2) and the resulting electron transfer processes, the ternary DPOR enzyme holocomplex was trapped as an octameric (ChlN/ChlB)(2)(ChlL(2))(2) complex after incubation with non-hydrolyzable ATP analogs. Electron paramagnetic resonance spectroscopic experiments of various DPOR complexes in combination with circular dichroism spectroscopic experiments of the ChlL(2) protein revealed a detailed redox catalytic cycle for nucleotide-dependent DPOR catalysis.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources